Abstract:
In an oxidation-insensitive polymer-stabilized noble metal colloid comprising noble metal particles which have one or more oxidation-insensitive polymers containing sulfonic acid groups or phosphonic acid groups coordinated to their surface, the polymers are selected from the group consisting of sulfonated, partially fluorinated or fluorinated polystyrene, sulfonated, partially sulfonated or fluorinated alkylene-styrene copolymers, sulfonated, perfluorinated alkylene-alkylene oxide copolymers, sulfonated polystyrene, sulfonated polyarylene oxides, sulfonated polyarylene ether sulfones, sulfonated polyarylene ether ketones, sulfonated polyphenylene, sulfonated polyphenylene sulfide and phosponated arylene oxides and phosphonated polybenzimidazoles, with the polymers mentioned being able to bear further substituents.
Abstract:
Disclosed is an NOx storage catalyst in honeycomb form wherein the honeycomb is formed from at least one alkaline earth metal sulfate as precursor compound of the storage material, optionally in combination with the customary concomitant and assistant materials and/or optionally at least one stabilizer. Also disclosed is a process for producing such a catalyst. The catalyst is useful for detoxifying exhaust gases from lean burn engines.