Abstract:
The invention relates to a method for producing 1,3 butadien by means of the oxidative dehydration of n-butenes on a heterogenous particulate multimetal oxide catalyst which contains molybdenum as the active compound and at least one other metal and which is filled into the contact tubes (KR) of two or more tube bundle reactors (R-I, R-II), wherein a heat transfer medium flows around the intermediate space between the contact tubes (KR) of the two or more tube bundle reactors (R-I, R-II). The method includes a production mode and a regeneration mode which are carried out in an alternating manner. In the production mode, an n-butene-containing feed flow is mixed with an oxygen-containing gas flow and conducted as a supply flow (1) over the heterogenous particulate multimetal oxide catalyst filled into the contact tubes (KR) of the two or more tube bundle reactors (R-I, R-II), and the heat transfer medium absorbs the released reaction heat, minus the heat quantity used to heat the supply flow (1) to the reaction temperature in the production mode, by means of an indirect heat exchange and completely or partly dispenses the reaction heat onto a secondary heat transfer medium (H2Oliq) in an external cooler (SBK). In the regeneration mode, the heterogenous particulate multimetal oxide catalyst is regenerated by conducting an oxygen-containing gas mixture (3) over the catalyst and burning off the deposits accumulated on the heterogenous particulate multimetal oxide catalyst. The invention is characterized in that the two or more tube bundle reactors (R-I, R-II) have a single heat transfer medium circuit and as many of the two or more tube bundle reactors (R-I, R-II) as necessary are operated constantly in the production mode so that the released reaction heat, minus the heat quantity used to heat the supply flow (1) to the reaction temperature in the production mode, suffices to keep the temperature of the heat transfer medium in the intermediate spaces between the content tubes (KR) of all the tube bundle reactors (R-I, R-II) at a constant level with a variation range of maximally +/−10 DEG C.
Abstract:
A process for oxidative dehydrogenation of n-butenes to 1,3-butadiene in a fixed-bed reactor (R), which comprises at least two production steps (i) and at least one regeneration step (ii), and in which in a production step (i), a starting gas mixture (1) comprising the n-butenes is mixed with an oxygen-comprising gas (2) and brought into contact with a heterogeneous, particulate multimetal oxide catalyst comprising molybdenum and at least one further metal as active composition in the fixed-bed reactor (R) and in a regeneration step (ii), the heterogeneous, particulate multimetal oxide catalyst comprising molybdenum and at least one further metal as active composition is regenerated by passing an oxygen-comprising regeneration gas mixture over it and burning off the carbonaceous material deposited on the multimetal oxide catalyst, where a regeneration step (ii) is carried out between two production steps (i) and where a product gas stream (6) which comprises 1,3-butadiene and additionally unreacted n-butenes, oxygen, water and further secondary components, in particular carbon monoxide, carbon dioxide, inert gases, in particular nitrogen, high-boiling hydrocarbons, i.e. hydrocarbons having a boiling point of 95° C. or above at a pressure of one atmosphere, optionally hydrogen and optionally oxygenates is obtained in the production step (i) in the fixed-bed reactor (R) and is fed as such or after one or more intermediate steps as stream (11) to an absorption column (K) in which an absorption is carried out at a pressure in the range from 3.5 to 20 bar by means of a high-boiling absorption medium (13) which becomes loaded with the C4-hydrocarbons from the product gas stream (6) or the stream (11) and is taken off as loaded solvent stream (14) from the bottom of the absorption column (K) to give an overhead stream (12) comprising oxygen, low-boiling hydrocarbons, i.e. hydrocarbons having a boiling point of less than 95° C. at a pressure of one atmosphere, residues of C4-hydrocarbons, residues of high-boiling hydrocarbons, i.e. hydrocarbons having a boiling point of 95° C. or above at a pressure of one atmosphere, optionally inert gases, in particular nitrogen, optionally carbon oxides and optionally water vapor, and is partly or completely recycled as recycle stream to the fixed-bed reactor (R), wherein at the end of each production step (i), the introduction of the oxygen-comprising gas (2) into the reactor (R) is throttled back or shut off and the production step (i) is continued until the oxygen concentration in the overhead stream (12) has decreased to 5% by volume, based on the total volume of the overhead stream (12), whereupon the introduction of the gas stream (1) comprising the n-butenes and also the introduction of the oxygen-comprising gas (2) is shut off, if this has not already been done at the end of the production step (i), at which point the production step (i) is complete and the regeneration step (ii) is started by the overhead stream (12) from the absorption column (K) functioning as oxygen-comprising regeneration gas mixture or substream of the oxygen-comprising regeneration gas mixture, is proposed.
Abstract:
The invention relates to a process for preparing butadiene from n-butenes having a start-up phase and an operating phase, wherein the process in the operating phase comprises the steps:A) provision of a feed gas stream a1 comprising n-butenes; B) introduction of the feed gas stream a1 comprising n-butenes, of an oxygen-comprising gas stream a2 and of an oxygen-comprising recycle gas stream d2 into at least one oxidative dehydrogenation zone and oxidative dehydrogenation of n-butenes to butadiene, giving a product gas stream b comprising butadiene, unreacted n-butenes, water vapor, oxygen, low-boiling hydrocarbons, high-boiling secondary components, possibly carbon oxides and possibly inert gases; C) cooling and compression of the product gas stream b and condensation of at least part of the high-boiling secondary components, giving at least one aqueous condensate stream c1 and a gas stream c2 comprising butadiene, n-butenes, water vapor, oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases; D) introduction of the gas stream c2 into an absorption zone and separation of incondensable and low-boiling gas constituents comprising oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases as gas stream d from the gas stream c2 by absorption of the C4-hydrocarbons comprising butadiene and n-butenes in an absorption medium, giving an absorption medium stream loaded with C4-hydrocarbons and the gas stream d, and recirculation, optionally after separating off a purge gas stream p, of the gas stream d as recycle gas stream d2 to the oxidative dehydrogenation zone; and the start-up phase comprises the steps: i) introduction of the oxygen-comprising gas stream and an inert gas stream into the dehydrogenation zone in such a ratio that the oxygen content of the recycle gas stream d2 corresponds to from 30 to 80% of the oxygen content of the recycle gas stream d2 in the operating phase; ii) setting of the recycle gas stream d2 to at least 70% of the volume flow of the recycle gas in the operating phase; iii) optional introduction, at an initial oxygen content of the recycle gas stream d2 of from 30 to 80% of the oxygen content of the recycle gas stream d2 in the operating phase, of a steam stream a3 into the dehydrogenation zone; iv) introduction, at an initial oxygen content of the recycle gas stream d2 of from 30 to 80% of the oxygen content of the recycle gas stream d2 in the operating phase, of an oxygen-comprising gas stream a2′ and a butene-comprising feed gas stream a1′ having a smaller volume flow than in the operating phase in a ratio k=a2′/a1′ and raising of the volume flow of the gas streams a1′ and a2′ until the volume flows of the gas streams a1 and a2 in the operating phase are obtained, with the recycle gas stream d2 being at least 70% and not more than 120% of the volume flow in the operating phase.
Abstract:
The invention relates to a method for producing 1,3 butadien by means of the oxidative dehydration of n-butenes on a heterogenous particulate multimetal oxide catalyst which contains molybdenum as the active compound and at least one other metal and which is filled into the contact tubes (KR) of two or more tube bundle reactors (R-I, R-II), wherein a heat transfer medium flows around the intermediate space between the contact tubes (KR) of the two or more tube bundle reactors (R-I, R-II). The method includes a production mode and a regeneration mode which are carried out in an alternating manner. In the production mode, an n-butene-containing feed flow is mixed with an oxygen-containing gas flow and conducted as a supply flow (1) over the heterogenous particulate multimetal oxide catalyst filled into the contact tubes (KR) of the two or more tube bundle reactors (R-I, R-II), and the heat transfer medium absorbs the released reaction heat, minus the heat quantity used to heat the supply flow (1) to the reaction temperature in the production mode, by means of an indirect heat exchange and completely or partly dispenses the reaction heat onto a secondary heat transfer medium (H2Oliq) in an external cooler (SBK). In the regeneration mode, the heterogenous particulate multimetal oxide catalyst is regenerated by conducting an oxygen-containing gas mixture (3) over the catalyst and burning off the deposits accumulated on the heterogenous particulate multimetal oxide catalyst. The invention is characterized in that the two or more tube bundle reactors (R-I, R-II) have a single heat transfer medium circuit and as many of the two or more tube bundle reactors (R-I, R-II) as necessary are operated constantly in the production mode so that the released reaction heat, minus the heat quantity used to heat the supply flow (1) to the reaction temperature in the production mode, suffices to keep the temperature of the heat transfer medium in the intermediate spaces between the content tubes (KR) of all the tube bundle reactors (R-I, R-II) at a constant level with a variation range of maximally +/−10 DEG C.