Abstract:
A conductive paste composition according to the present disclosure contains silver-coated copper nanowires with a core-shell structure; a binder mixture containing a silicone resin binder and a hydrocarbon-based resin binder; and an organic solvent, such that the conductive paste composition has a low sheet resistance and may withstand a high temperature, thereby implementing excellent conductivity and electromagnetic wave shielding properties. Furthermore, the conductive paste may be widely used in various fields such as electromagnetic wave shielding, solar cell electrodes, electronic circuits.
Abstract:
The present invention relates to an epoxy paste composition including silver-coated copper nanowires having a core-shell structure, and a conductive film including the same.
Abstract:
An electric roasting pan according to the present invention comprises: a roasting pan; a heating layer being in surface contact with the roasting pan and comprising a carbon nanotube and a silicone-based adhesive; and an electrode in contact with the heating layer. The electric roasting pan has excellent thermal efficiency thanks to the minimal heat loss thereof, can reach a target temperature within a short time to reduce a preheating time, and affords excellent cooking quality. Furthermore, the electric roasting pan can substantially prevent the occurrence of temperature deviation across the area of the roasting pan during a temperature increase and is of high durability and safety.
Abstract:
A ceramic paste composition including carbon nanotubes or a carbon nanotube-metal composite and a silicone adhesive, wherein the silicone adhesive includes 0.1 to 10 wt % of a silanol group, and has a mole ratio of a phenyl group to a methyl group of 0.3 to 2.5. The ceramic paste composition has low sheet resistance, through which an excellent heat generating property, and shielding, absorbing and conducting properties may be implemented in one or more embodiments. Further, though the ceramic paste composition has a very high heat generating temperature of 400° C., as compared with general paste based on carbon nanotubes, the physical properties thereof may be maintained stably. In addition, the ceramic paste may be widely used in various fields including heat generating products such as those for keeping warmth or heating, and products for electromagnetic wave shielding and absorption, electrodes, electronic circuits, antennas, and the like.