Abstract:
Devices for cosmetically treating a patient's skin tissue are disclosed, the device comprising a flexible pad adapted to conform to shape of a skin surface of the patient when placed on the skin surface, the flexible pad carrying at least one radio frequency (RF) electrode configured and operable to heat one or more layers of the skin tissue, and at least one electrical muscle stimulating (EMS) electrode configured and operable to cause contraction and relaxation of the one or more muscles; the device being connectable to an external control unit for receiving the RF and EMS signals to apply the cosmetic skin treatment; the device may comprise one or more accelerometers and/or temperature sensors that give feedback about the skin treatment.
Abstract:
Disclosed is a lamp block comprising a lamp which is a glass tube having an internal final end and an external final end, wherein said internal final end ends with an electrode that fits directly into a connector placed on the machine into which said lamp is mounted and said external final end ends with an electrode to which a cable is connected, at least one portion of said cable being inserted in a key which is a hollow cylinder. Also disclosed is a laser apparatus suitable to house said lamp block and a method for extracting and housing said lamp block in said laser apparatus. In a preferred embodiment, said apparatus further comprise a system for electronic recognition.
Abstract:
A system for cosmetically treating a patient's skin or body with one or more EMS coils and/or RF electrodes mounted on a planar holder; a hydrogel containing gel pad, the gel pad being positionable between the holder and the skin tissue; wherein the gel pad being of a material that is biocompatible and conducts RF and/or EMS energy when EMS energy is applied from the one or more EMS coils; a programmable controller to activate the one or more EMS coils; the programmable controller, after the planar holder is applied to the skin tissue, being configured to activate one or more of the plurality of EMS coils to provide treatment in the form of stimulation to the skin tissue.
Abstract:
A system for cosmetically treating a patient's skin or body with one or more EMS coils and/or RF electrodes mounted on a planar holder; a hydrogel containing gel pad, the gel pad being positionable between the holder and the skin tissue; wherein the gel pad being of a material that is biocompatible and conducts RF and/or EMS energy when EMS energy is applied from the one or more EMS coils; a programmable controller to activate the one or more EMS coils; the programmable controller, after the planar holder is applied to the skin tissue, being configured to activate one or more of the plurality of EMS coils to provide treatment in the form of stimulation to the skin tissue.
Abstract:
A system for cosmetically treating a patient's skin or body with one or more EMS coils and/or RF electrodes mounted on a planar holder; a hydrogel containing gel pad, the gel pad being positionable between the holder and the skin tissue; wherein the gel pad being of a material that is biocompatible and conducts RF and/or EMS energy when EMS energy is applied from the one or more EMS coils; a programmable controller to activate the one or more EMS coils; the programmable controller, after the planar holder is applied to the skin tissue, being configured to activate one or more of the plurality of EMS coils to provide treatment in the form of stimulation to the skin tissue.
Abstract:
A laser device for dermocosmetic, medical, or aesthetic treatments, comprising: A) a laser system comprising a lamp-pumped source; B) an optical fibre transporting the laser beam produced by said source; C) a handpiece or a scanner connected to said optical fibre, comprising a lens and mirror system projecting the image of the laser beam onto the area to be treated; characterized in that said optical fibre has a rectangular section and said image is rectangular. A method of dermocosmetic laser treatment characterized by rectangular laser spots is also claimed.It is a further object of the present invention a tracing kit, which allows the marking of a surface area, preferably of biological tissue, with a fluorescent or photosensitive substance invisible to light. Such an invisible and fluorescent or photosensitive substance absorbs the electromagnetic radiation with the proper wavelength emitted by the illuminator and reflects it in the visible spectrum.
Abstract:
A method of dermocosmetic treatment for skin tissue includes a plurality of treatment laser light sources which are in communication with a rectangular-shaped optical fiber; the optical fiber includes a proximal end to receive laser light from the plurality of treatment laser light sources and a distal end to transmit overlapping laser light to the area of skin tissue to be treated; the plurality of treatment of laser light sources are activated to impinge one or more rectangular-shaped laser light images within one or more rectangular-shaped areas.
Abstract:
A device for vaginal remodeling includes a preferably disposable, sterilizable handpiece which is an elliptical or preferably cylindrical applicator, adapted to be inserted in vagina. An one electrode is positioned either on the outer surface of the handpiece or on the inner surface of the handpiece. A machine emits an RF sinusoidal signal, either continuous or pulsed, to cause heating in the tissues, or a plasma discharge, having a frequency from 10 kHz to 6 MHz, preferably between 50 kHz and 2 MHz, or between 200 kHz and 6 MHz, and connected to the electrode. Temperature sensors detect the temperature and are positioned on the handpiece. A PID algorithm is based software for feedback control of the power delivered on the basis of the detected temperature. The curvature radius of the electrode is equal to that of the handpiece on which it is positioned and is preferably tubular or annular.
Abstract:
Disclosed are a laser device and method for dermocosmetic, medical or aesthetic treatments. The device comprises: a laser system comprising a lamp-pumped source; an optical fiber transporting the laser beam produced by said source; a handpiece or a scanner connected to said optical fiber, comprising a lens and mirror system projecting the image of the laser beam onto the area to be treated; wherein said optical fibre has a rectangular section and said image is rectangular.