Abstract:
The invention relates to a method of operating a zinc-bromine battery, especially at a high temperature, comprising adding 1-n-butyl-2-methyl-pyridinium bromide to the electrolyte of said battery, and charging or discharging said cell. Also provided is the use of 1-n-butyl-2-methyl-pyridinium bromide as an additive in a zinc-bromine battery operating at a temperature above 30° C., and an aqueous concentrate with high content of 1-n-butyl-2-methyl-pyridinium bromide.
Abstract:
The invention relates to an electrolyte solution suitable for use in a zinc-bromine battery, comprising zinc bromide and a mixture of at least two complexing agents selected from the group consisting of 1-R2-2-methyl pyridinium bromide and 1-R3-3-methyl pyridinium bromide salts, wherein each of R2 and R3 is independently an alkyl group having not less than five carbon atoms.
Abstract:
The invention relates to the use of 1-alkyl-2-alkyl pyridinium halide (e.g., 1-ethyl-2-methyl pyridinium bromide), 1-alkyl-3-alkyl pyridinium halide (e.g., 1-ethyl-3-methyl pyridinium bromide) or 1-alkyl-3-alkyl imidazolium halide (e.g., 1-butyl 3-methyl imidazolium bromide) as additives in an electrolyte used in hydrogen/bromine cells, for complexing the elemental bromine formed in such cells. The invention also provides an electrolyte comprising aqueous hydrogen bromide and said additives, and processes for operating an electrochemical flow cell selected from the group consisting of hydrogen/bromine or vanadium/bromine cells.
Abstract:
The invention relates to the use of at least one 1-alkyl-3-alkyl-pyridinium halide, in particular 1-alkyl-3-methyl-pyridinium bromide, as an additive in bromine-generating electrochemical cells, such as zinc/bromine cells. Processes for preparing 1-alkyl-3-methyl-pyridinium bromide and concentrated aqueous solutions comprising same for use as additives in the aforementioned cells, are also disclosed.