Abstract:
Optical fiber bend limiter that prevents contaminates from entering an optical fiber closure is described. The optical fiber bend limiter has an arcuate portion having a bend radius for limiting a minimum bend of an optical fiber. The bend limiter has a central recess for inserting a wall of an optical closure therein and limiting the minimum bend radius of an optical fiber. The bend limiter also includes peripheral recesses. When desired, the bend limiter is secured to a wall of the optical fiber closure via the peripheral recesses thereby closing the aperture and protecting the optical fibers from contaminants.
Abstract:
An optical fiber closure includes a housing having opposing walls, each of the opposing walls having an aperture defined therein. Each aperture is adapted to receive an optical fiber therethrough. A bend limiter is proximate each aperture. Each bend limiter includes a proximate edge, a distal edge, and an arcuate surface. The arcuate surface extends between the proximate and distal edges and has a radius of curvature greater than a predetermined minimum bend radius. The distal edge of each bend limiter is substantially aligned with an outer edge of a respective one of the opposing walls of the optical fiber closure.
Abstract:
An optical connector assembly is described. In one example, a panel includes a plurality of apertures formed therein. A plurality of receptacles are respectively supported within the plurality of apertures. Each of the plurality of receptacles is adapted to communicate with an optical connector. In addition, each of the plurality of receptacles is disposed at an angle with respect to a plane of the panel, where the angle is less than 90 degrees. In another example, a housing includes opposing side walls. A panel is mounted within the housing. The panel includes a plurality of apertures for supporting optical connectors. A spool is mounted to one of the opposing side walls of the housing.
Abstract:
The present invention is directed to a bracket for holding a printed circuit board in relation to a connector for wave solder application comprising a mounting element for attaching the bracket to the connector, a shelf for supporting at least a portion of the printed circuit board at a predetermined height above the connector and a latch for retaining the printed circuit board on the shelf.
Abstract:
A connector assembly comprises a panel having a plurality of apertures formed therein. Each aperture is adapted to accept a pivot member of a connector. A plurality of flexible members are proximate each aperture. For each aperture, the plurality of flexible members are configured to maintain a centering bias on a connector when such connector is supported in the respective aperture.
Abstract:
A system for removably attaching a first object to a second object comprising an attachment member on said first object which cooperates with an opening for receiving the attachment member on the second object. The attachment member is deformable from a static state to an extended state during the application of a force on the attachment member wherein the attachment member has a greater width in its static state than in its extended state. The width of the opening cooperating with the attachment member is less than at least a portion of the width of the attachment member in its static state but substantially equal to or greater than the width of the attachment member in its extended state. The objects are attached by inserting a leading portion of the attachment member through the opening, grasping the leading portion on the underside of the second object and exerting a downward force to deform the attachment member into its extended state, moving the first object into an attachment position and releasing the leading portion of the attachment member.
Abstract:
A sealing device for sealing a cylindrical object, such as an electrical or fiber optic cable, includes a base with a first end, a second open end, and an inner wall formed inside the base and connecting the first end to the second open end. The sealing device also includes a cap having one end which is open and another end which is attached to the first end of the base. The one end of the cap includes a first cylindrical recess of a first diameter extending toward the base. In a first embodiment, a hole is drilled through the cap using the first cylindrical recess as a guide. A cable is passed through the hole and a heat shrink wrap assembly is used to seal the cable. In a second embodiment, the cap is removed from the base along a frangible connection. A threaded fastener with a first hole and a gasket with a second hole are provided. A cable is passed through the first and second holes, and the threaded fastener is screw onto the base to seal the cable.
Abstract:
A restraint mechanism for limiting the angular rotation of a first and a second component which move about a common hinge comprising a restraining arm adapted to extend along a portion of the first component in the direction of the hinge and having a change of direction away from the hinge, and an attachment member for attaching the restraint mechanism to said first component.
Abstract:
An insulation displacement connector may have wire insertion holes, a cap pivotally mounted on a top section, and terminals that have a retention channel for latching to a test lead of a bridge clip. The bridge clip may have resilient latch arms for retention of the bridge clip to the insulation displacement connector. The latch arms may be movable from a closed (latched) position to an open (unlatched) position.
Abstract:
A seal for sealing a connector having a test aperture includes a body and a latch formed with the body, the latch including a first deflection beam formed on one side of the body and a second deflection beam formed on an opposite side of the body. The latch also can include a first hook formed with the first deflection beam and a second hook formed with the second deflection beam. The first hook and the second hook are each pivotable between a first latched position and a second unlatched position when the first deflection beam and the second deflection beam are compressed.