Abstract:
Cold-pressed mats of lignocellulosic material having a Push Off Test extension equal to at least 85% of that of a mat made with a urea-formaldehyde resin are produced from a lignocellulosic material and binder system. These mats are produced at ambient temperature by separately adding each component of the binder system to the lignocellulosic material, blending the lignocellulosic material and binder system to coat the lignocellulosic material with the binder system, forming the coated lignocellulosic material into the desired form and applying pressure to the formed lignocellulosic material to obtain the desired thickness. The binder system includes: (i) at least one polyfunctional isocyanate and (ii) at least one aqueous dispersion of an adhesive or tackifier.
Abstract:
The present invention provides highly fluorescent markers, made from a reactive polymer and an isocyanate, that fluoresce in the ultraviolet or near infrared region without being visible to the human eye at low concentrations in the fluid or article being marked. The molecular weight and fluorescence emission wavelength of these highly fluorescent marker compounds can be adjusted to provide a multitude of markers with unique fluorescence signatures.
Abstract:
This invention relates to novel double metal cyanide catalysts and to a process for the production of these double metal cyanide catalysts. These DMC catalysts can be used to prepare polyoxyalkylene polyols which have low amounts of high molecular weight tail compared polyoxyalkylene polyols prepared from DMC catalysts of the prior art.
Abstract:
The present invention provides highly fluorescent markers, made from a reactive polymer and an isocyanate, that fluoresce in the ultraviolet or near infrared region without being visible to the human eye at low concentrations in the fluid or article being marked. The molecular weight and fluorescence emission wavelength of these highly fluorescent marker compounds can be adjusted to provide a multitude of markers with unique fluorescence signatures.
Abstract:
This invention relates to novel double metal cyanide catalysts and to a process for the production of these double metal cyanide catalysts. These DMC catalysts can be used to prepare polyoxyalkylene polyols which have low amounts of high molecular weight tail compared polyoxyalkylene polyols prepared from DMC catalysts of the prior art.
Abstract:
The present invention provides highly fluorescent markers, made from a reactive polymer and an isocyanate, that fluoresce in the ultraviolet or near infrared region without being visible to the human eye at low concentrations in the fluid or article being marked. The molecular weight and fluorescence emission wavelength of these highly fluorescent marker compounds can be adjusted to provide a multitude of markers with unique fluorescence signatures.
Abstract:
Polyurethane foams having a NFPA 101 Class B rating (ASTM E-84) which pass the FM 4450 calorimeter Test are produced by reacting: (a) an organic polyisocyanate, (b) at least one polyether polyol or polyester polyol with a nominal hydroxyl functionality of at least 2.0, (c) a blowing agent composition and (d) at least one halogen-free flame retardant. The blowing agent composition includes: (1) no more than 10% by weight, based on total weight of the foam-forming composition, of one or more hydrocarbons having an LEL less than 2% by volume in air, and/or (2) a hydrocarbon having an LEL greater than 2% by volume in air, and (3) up to 1% by weight, based on total weight of foam-forming composition, of water.
Abstract translation:通过FM 4450量热计测试的具有NFPA 101 Class B等级(ASTM E-84)的聚氨酯泡沫体通过使(a)有机多异氰酸酯,(b)至少一种具有标称羟基官能团的聚醚多元醇或聚酯多元醇 至少2.0,(c)发泡剂组合物和(d)至少一种不含卤素的阻燃剂。 发泡剂组合物包括:(1)基于泡沫形成组合物的总重量,不超过10重量%的空气中LEL小于2体积%的一种或多种烃,和/或(2 )在空气中LEL大于2体积%的烃,和(3)基于发泡组合物的总重量至多1重量%的水。
Abstract:
Cold-pressed mats of lignocellulosic material having a Push Off Test extension equal to at least 85% of that of a mat made with a urea-formaldehyde resin are produced from a lignocellulosic material and binder system. These mats are produced at ambient temperature by separately adding each component of the binder system to the lignocellulosic material, blending the lignocellulosic material and binder system to coat the lignocellulosic material with the binder system, forming the coated lignocellulosic material into the desired form and applying pressure to the formed lignocellulosic material to obtain the desired thickness. The binder system includes: (i) at least one polyfunctional isocyanate and (ii) at least one aqueous dispersion of an adhesive or tackifier.