Dynamic Production Scheduling Method and Apparatus Based on Deep Reinforcement Learning, and Electronic Device

    公开(公告)号:US20220179689A1

    公开(公告)日:2022-06-09

    申请号:US17524335

    申请日:2021-11-11

    Abstract: The embodiments of the present invention provide a dynamic production scheduling method, apparatus and electronic device based on deep reinforcement learning, which relate to the technical field of Industrial Internet of Things, and can reduce the overall processing time of jobs on the basis of not exceeding the processing capacity of production device. The embodiments of the present invention includes: acquiring static characteristics, dynamic characteristics of each of jobs and system dynamic characteristics, inputting the static characteristics, dynamic characteristics of each of jobs to be scheduled and system dynamic characteristics into a scheduling model to obtain a job execution sequence or batch execution sequence of the jobs in each production stage, wherein, the static characteristics of the job include an amount of tasks and time required for completion, the dynamic characteristics of the job include reception moment, and the system dynamic characteristics include a remaining amount of tasks that can be performed by the device in each production stage. The scheduling model is a model obtained after training a first actor network based on static characteristics and dynamic characteristics of a sample job, system dynamic characteristics, and a first critic network.

    Dynamic production scheduling method and apparatus based on deep reinforcement learning, and electronic device

    公开(公告)号:US12153954B2

    公开(公告)日:2024-11-26

    申请号:US17524335

    申请日:2021-11-11

    Abstract: The embodiments of the present invention provide a dynamic production scheduling method, apparatus and electronic device based on deep reinforcement learning, which relate to the technical field of Industrial Internet of Things, and can reduce the overall processing time of jobs on the basis of not exceeding the processing capacity of production device. The embodiments of the present invention includes: acquiring static characteristics, dynamic characteristics of each of jobs and system dynamic characteristics, inputting the static characteristics, dynamic characteristics of each of jobs to be scheduled and system dynamic characteristics into a scheduling model to obtain a job execution sequence or batch execution sequence of the jobs in each production stage, wherein, the static characteristics of the job include an amount of tasks and time required for completion, the dynamic characteristics of the job include reception moment, and the system dynamic characteristics include a remaining amount of tasks that can be performed by the device in each production stage. The scheduling model is a model obtained after training a first actor network based on static characteristics and dynamic characteristics of a sample job, system dynamic characteristics, and a first critic network.

Patent Agency Ranking