Abstract:
Various embodiments enable the operation of fuel cell system support equipment using variable frequency drives and power from fuel cells and/or grid power sources.
Abstract:
A modular fuel cell system includes a base, at least four power modules arranged in a row on the base, and a fuel processing module and power conditioning module arranged on at least one end of the row on the base. Each power module includes a separate cabinet which contains at least one fuel cell stack located in a hot box. The power modules are electrically and fluidly connected to the at least one fuel processing and power conditioning modules through the base.
Abstract:
A modular electrolyzer system including a power module and a generator module wherein the power module and the generator module are integrated with a hydrogen collection component and a steam delivery component, the hydrogen collection component and the steam delivery component being disposed on a structural base.
Abstract:
A method of controlling a fuel cell system includes applying alternating current (AC) signals to an individual fuel cell. The AC signals have a plurality of different frequencies. A voltage across the individual fuel cell is determined at each of the plurality of different frequencies. An impedance characteristic of the individual fuel cell is determined based at least in part on the voltage across the individual fuel cell at each of the plurality of different frequencies. The individual fuel cell is controlled based at least in part on the impedance characteristic.
Abstract:
A method of controlling a fuel cell system includes applying alternating current (AC) signals to an individual fuel cell. The AC signals have a plurality of different frequencies. A voltage across the individual fuel cell is determined at each of the plurality of different frequencies. An impedance characteristic of the individual fuel cell is determined based at least in part on the voltage across the individual fuel cell at each of the plurality of different frequencies. The individual fuel cell is controlled based at least in part on the impedance characteristic.
Abstract:
A sorbent bed assembly, a fuel cell system including the sorbent bed assembly, and methods of using the same. The sorbent bed assembly includes sorbent beds disposed in a stack, such that the sorbent beds extend lengthwise in a non-vertical direction, and conduits configured to fluidly connect the sorbent beds. One or more of the sorbent beds may also include a housing, a removable cartridge disposed in the housing and comprising a sorbent material configured to purify the fuel, and a support configured to prevent the fuel from bypassing the cartridge when the fuel flows through the housing.
Abstract:
A measurement device for measuring voltages along a linear array of voltage sources, such as a fuel cell stack, includes at least one movable contact or non-contact voltage probe that measures a voltage of an array element.
Abstract:
A measurement device for measuring voltages along a linear array of voltage sources, such as a fuel cell stack, includes at least one movable contact or non-contact voltage probe that measures a voltage of an array element.
Abstract:
A method of controlling a fuel cell system includes applying alternating current (AC) signals to an individual fuel cell. The AC signals have a plurality of different frequencies. A voltage across the individual fuel cell is determined at each of the plurality of different frequencies. An impedance characteristic of the individual fuel cell is determined based at least in part on the voltage across the individual fuel cell at each of the plurality of different frequencies. The individual fuel cell is controlled based at least in part on the impedance characteristic.
Abstract:
Systems and methods for facilitating a medium voltage microgrid operation to manage critical loads are disclosed. The system includes at least two fuel cell systems that operate in one of at least two operating modes including a grid-forming mode and a grid-following mode, based on an operation of at least two utility feeders of a grid. The system includes a controller that receives values corresponding to electrical parameter(s) from at least two utility circuit breakers and a load circuit breaker, detects availability status of the utility circuit breakers to supply power to corresponding at least two portions of the critical load, and a connection status of the load circuit breaker, based on the values, and facilitates the at least two fuel cell systems to operate in one of the at least two operating modes. Further, the system is scalable, redundant, and reliable, and reliability and redundancy are customizable.