Abstract:
An off-head detection system for an in-ear headset comprises an input device that receives an audio signal, a feed-forward microphone signal, and a driver output signal; an expected-output computation circuit that predicts a value of the driver output signal based on a combination of the audio signal and the feed-forward microphone signal from the signal monitoring circuit, and off-head data from the off-head model; and a comparison circuit that compares the observed output signal provided to the driver and the computed expected output to determine an off-head state of the in-ear headset.
Abstract:
An off-head detection system for an in-ear headset comprises an input device that receives an audio signal, a feed-forward microphone signal, and a driver output signal; an expected-output computation circuit that predicts a value of the driver output signal based on a combination of the audio signal and the feed-forward microphone signal from the signal monitoring circuit, and off-head data from the off-head model; and a comparison circuit that compares the observed output signal provided to the driver and the computed expected output to determine an off-head state of the in-ear headset.
Abstract:
In order to enable audio applications for a mobile device that utilize more than one audio input, a peripheral audio device is provided for encoding multichannel audio signals into a reduced number of channels. The peripheral audio device receives audio signals from an audio input/output device, generates at least one output audio signal by combining the received audio signals, and transmits the at least one generated output audio signal to the mobile device. The number of received audio signals is greater than the number of generated output audio signals.
Abstract:
An off-head detection system for an in-ear headset comprises an input device that receives an audio signal, a feed-forward microphone signal, and a driver output signal; an expected-output computation circuit that predicts a value of the driver output signal based on a combination of the audio signal and the feed-forward microphone signal from the signal monitoring circuit, and off-head data from the off-head model; and a comparison circuit that compares the observed output signal provided to the driver and the computed expected output to determine an off-head state of the in-ear headset.
Abstract:
The technology described in this document can be embodied in a computer-implemented method that includes receiving information indicative of an acoustic transfer function of a first acoustic device, and obtaining a set of calibration parameters that represent a calibration of a second acoustic device with respect to the first acoustic device. The method includes determining a set of operating parameters for the second acoustic device based at least in part on (i) the acoustic transfer function and (ii) the calibration parameters. The second acoustic device, when configured using the set of operating parameters, produces an acoustic performance substantially same as that of the first acoustic device. The method also includes providing the set of operating parameters to the second acoustic device.
Abstract:
The technology described in this document can be embodied in a computer-implemented method that includes causing, by one or more processing devices, a user-interface to be displayed on a display device, the user-interface including one or more controls for providing information to adjust a hearing assistance device, and transmitting a request for a recommended set of parameters for adjusting the hearing assistance device in an acoustic environment. The request includes identification information associated with (i) a user of the hearing assistance device and (ii) the acoustic environment. The method also includes receiving, from a remote computing device, and responsive to the request, the recommended set of parameters, and receiving, via the one or more controls, information indicative of adjustments to at least a subset of the recommended set of parameters. The method further includes providing the adjusted set of parameters to the hearing assistance device.
Abstract:
An off-head detection system for an in-ear headset comprises an input device that receives an audio signal, a feed-forward microphone signal, and a driver output signal; an expected-output computation circuit that predicts a value of the driver output signal based on a combination of the audio signal and the feed-forward microphone signal from the signal monitoring circuit, and off-head data from the off-head model; and a comparison circuit that compares the observed output signal provided to the driver and the computed expected output to determine an off-head state of the in-ear headset.
Abstract:
The technology described in this document can be embodied in a computer-implemented method that includes receiving information indicative of an acoustic transfer function of a first acoustic device, and obtaining a set of calibration parameters that represent a calibration of a second acoustic device with respect to the first acoustic device. The method includes determining a set of operating parameters for the second acoustic device based at least in part on (i) the acoustic transfer function and (ii) the calibration parameters. The second acoustic device, when configured using the set of operating parameters, produces an acoustic performance substantially same as that of the first acoustic device. The method also includes providing the set of operating parameters to the second acoustic device.
Abstract:
An off-head detection system for an in-ear headset comprises an input device that receives an audio signal, a feed-forward microphone signal, and a driver output signal; an expected-output computation circuit that predicts a value of the driver output signal based on a combination of the audio signal and the feed-forward microphone signal from the signal monitoring circuit, and off-head data from the off-head model; and a comparison circuit that compares the observed output signal provided to the driver and the computed expected output to determine an off-head state of the in-ear headset.
Abstract:
The technology described in this document can be embodied in a computer-implemented method that includes receiving information indicative of an acoustic transfer function of a first acoustic device, and obtaining a set of calibration parameters that represent a calibration of a second acoustic device with respect to the first acoustic device. The method includes determining a set of operating parameters for the second acoustic device based at least in part on (i) the acoustic transfer function and (ii) the calibration parameters. The second acoustic device, when configured using the set of operating parameters, produces an acoustic performance substantially same as that of the first acoustic device. The method also includes providing the set of operating parameters to the second acoustic device.