Abstract:
An adapter to permit borescope access inside a gas turbine engine including a compressor stator having a plurality of compressor stator segments comprises a body portion defining a bore extending longitudinally therethrough from a first end to be disposed adjacent to outside surfaces of adjacent compressor stator segments to a second end to be disposed adjacent to inside surfaces of adjacent compressor stator segments. The bore permits a borescope to enter therethrough. The adapter further comprises an attachment portion for circumferentially coupling at least one compressor stator segment to an outer casing of the gas turbine engine.
Abstract:
A stator case for a gas turbine engine having a stator and a rotor. The rotor has a plurality of circumferential rows of blades. Each blade extends radially outward from a root to a tip. The case includes a tubular shell extending axially between a forward end and an aft end. The shell has an interior surface defining a hollow interior sized and shaped for receiving at least a portion of the rotor of the gas turbine engine. The case also includes a circular forward flange extending radially outward from the forward end of the shell and a circular aft flange extending radially outward from the aft end of the shell. In addition, the case includes a circular rib extending radially outward from the shell between adjacent rows of blades. The rib is sized and shaped for adjusting transient deflections of the shell to generally match transient deflections of the tips of the plurality of rotor blades to reduce a transient clearance between the interior surface of the tubular shell and the tips of the rotor blades.
Abstract:
The sealing apparatus and method of assembling the same is disclosed. The sealing apparatus may comprise a resilient member and a sealing member. The resilient member may define a cavity having a closed end and an open end. The resilient member may include a first wall having a first inner sealing surface and a second wall having a second inner sealing surface. The first and second walls may be joined at the closed end. The sealing member may be disposed at least partially in the cavity in sealing engagement with the first and second inner sealing surfaces. The sealing member may comprise an upper plurality of layered finger seals and a lower plurality of layered finger seals.
Abstract:
The sealing apparatus and method of assembling the same is disclosed. The sealing apparatus may comprise a resilient member and a sealing member. The resilient member may define a cavity having a closed end and an open end. The resilient member may include a first wall having a first inner sealing surface and a second wall having a second inner sealing surface. The first and second walls may be joined at the closed end. The sealing member may be disposed at least partially in the cavity in sealing engagement with the first and second inner sealing surfaces. The sealing member may comprise an upper plurality of layered finger seals and a lower plurality of layered finger seals.
Abstract:
A diffuser seal for an aft end of a high pressure compressor of a gas turbine engine is disclosed. The diffuser seal includes a flow guide carrier coupled to the diffuser case. The flow guide carrier is also coupled to a static seal. The static seal engages a rotary seal and permits air flow through the static and rotary seals in the aft direction. The flow guide carrier is also coupled to a fairing and a fairing/hub support. The flow guide carrier supports the fairing in a spaced-apart position with respect to the rear hub so that air flowing through the static and rotary seals passes between a forward surface of the fairing and the rear hub. The fairing/hub support extends forward from the flow guide support and engages an aft surface of the fairing thereby limiting movement of the rear hub and fairing in the aft direction. This design helps to prevent parts or debris from piercing the rear hub and entering the high pressure turbine in the even of a fan blade-out or fan blade-off event.
Abstract:
A blade outer air seal (BOAS) for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a seal body having a radially inner face and a radially outer face that axially extend between a leading edge portion and a trailing edge portion and a seal land that extends from the seal body and includes an inward pointing extension that extends radially inwardly from the radially inner face.
Abstract:
A diffuser seal for an aft end of a high pressure compressor of a gas turbine engine is disclosed. The diffuser seal includes a flow guide carrier coupled to the diffuser case. The flow guide carrier is also coupled to a static seal. The static seal engages a rotary seal and permits air flow through the static and rotary seals in the aft direction. The flow guide carrier is also coupled to a fairing and a fairing/hub support. The flow guide carrier supports the fairing in a spaced-apart position with respect to the rear hub so that air flowing through the static and rotary seals passes between a forward surface of the fairing and the rear hub. The fairing/hub support extends forward from the flow guide support and engages an aft surface of the fairing thereby limiting movement of the rear hub and fairing in the aft direction. This design helps to prevent parts or debris from piercing the rear hub and entering the high pressure turbine in the even of a fan blade-out or fan blade-off event.
Abstract:
A blade outer air seal (BOAS) for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a seal body having a radially inner face and a radially outer face that axially extend between a leading edge portion and a trailing edge portion. At least one of the leading edge portion and the trailing edge portion includes a solid wall and a perforated wall. At least a portion of the perforated wall is spaced from the solid wall such that a passage extends between the solid wall and the perforated wall.
Abstract:
A blade outer air seal (BOAS) for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a seal body having a radially inner face and a radially outer face that axially extend between a leading edge portion and a trailing edge portion. At least one of the leading edge portion and the trailing edge portion includes a solid wall and a perforated wall. At least a portion of the perforated wall is spaced from the solid wall such that a passage extends between the solid wall and the perforated wall.
Abstract:
A blade outer air seal (BOAS) for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a seal body having a radially inner face and a radially outer face that axially extend between a leading edge portion and a trailing edge portion and a seal land that extends from the seal body and includes an inward pointing extension that extends radially inwardly from the radially inner face.