Abstract:
An optical receiver apparatus and methods for mitigating intersymbol interference (ISI) in a differentially-encoded modulation transmission system by controlling constructive and destructive transfer functions. The receiver includes a bandwidth control element for controlling transfer function bandwidth, a transfer phase controller for controlling transfer function phase and/or an imbalancer for imbalancing the transfer functions for compensating for intersymbol interference and optimizing the quality of the received optical signal.
Abstract:
An apparatus for measuring the thickness of a film on a production line or the like. The apparatus includes a moveable member in contact with the film. The moveable member rotates about a fixed member and includes a transparent region. The apparatus also includes an optical probe attached to the fixed member. The optical probe has an optical fiber for coupling a light signal to the film through the transparent region of the moveable member and for returning light reflected from the film to a receiver for determining the thickness of the film. The optical probe may also include a lens assembly for imaging the light signal onto the film and imaging the reflected light signals back into the optical probe. The optical probe may also include a partially reflecting reference reflector for simplifying the analysis of multi-layer films.
Abstract:
An optical receiver apparatus and methods for mitigating intersymbol interference (ISI) in a differentially-encoded modulation transmission system by controlling constructive and destructive transfer functions. The receiver includes a bandwidth control element for controlling transfer function bandwidth, a transfer phase controller for controlling transfer function phase and/or an imbalancer for imbalancing the transfer functions for compensating for intersymbol interference and optimizing the quality of the received optical signal.
Abstract:
An optical receiver apparatus and methods for mitigating intersymbol interference (ISI) in a differentially-encoded modulation transmission system by controlling constructive and destructive transfer functions. The receiver includes a bandwidth control element for controlling transfer function bandwidth, a transfer phase controller for controlling transfer function phase and/or an imbalancer for imbalancing the transfer functions for compensating for intersymbol interference and optimizing the quality of the received optical signal.
Abstract:
An apparatus for applying an optical signal to a surface and collecting the light leaving the surface in response to the application of the optical signal. The optical signal and the collected light traverse an optical fiber having an end proximate to the surface which delivers light to the surface with the aid of a lens that couples the optical signal to the surface, collects the light emitted by the surface, and couples collected light into the optical fiber. A detector measures the intensity of light delivered into the optical fiber and generates a detection signal indicative of the measured intensity as a function of time. A set of actuators dither the position of the lens relative to the proximate end of the fiber. Each actuator operates at a different dither frequency and moves the lens relative to fiber along a different axis. The average position of the lens relative to the proximate end of the fiber along each axis is adjusted so as to maximize the average power detected at the corresponding dither frequency.
Abstract:
An apparatus and method for measuring the thickness of a film having top and bottom surfaces. The apparatus includes low coherence light source that generates a probe light signal. The film is positioned against a roller having a partially reflecting surface that is positioned at a fixed distance from the film. The probe light signal is applied to the film and is then reflected back through the film by the partially reflecting surface. The light leaving the film is collected to form the input to a receiver that determines the time delay between light reflected from the top and bottom surfaces of the film. The receiver output may also be used to determine the thickness of the various layers in a multi-layer film.
Abstract:
Apparatus and techniques for receiving and processing an optical signal. In one implementation, an optical receiver is provided to include a delay line interferometer, an etalon, and a data estimator for estimating the data carried on a differentially modulated optical input signal. The delay line interferometer receives the input signal and issues differentially decoded constructive and destructive signals. The etalon filters the constructive signal with a transmission stopband imposed over the passband of the constructive signal. The bandwidth of the etalon stopband is selected based on the bandwidth of the modulation of the input signal in order to maximize received signal quality. The data estimator uses a difference between signals derived from the filtered constructive signal and the destructive signal for estimating data.
Abstract:
An optical receiver apparatus and methods for mitigating intersymbol interference (ISI) in a differentially-encoded modulation transmission system by controlling constructive and destructive transfer functions. The receiver includes a bandwidth control element for controlling transfer function bandwidth, a transfer phase controller for controlling transfer function phase and/or an imbalancer for imbalancing the transfer functions for compensating for intersymbol interference and optimizing the quality of the received optical signal.