Abstract:
An acoustic processing device comprises: a resonant band detecting means that detects a resonant band of sound output from a speaker based on a measurement result of a predetermined measurement signal reproduced through the speaker; an analyzing means that analyzes the measurement result of the predetermined measurement signal; a control parameter generating means that generates a control parameter for controlling the resonant band detected by the resonant band detecting means based on an analysis result by the analyzing means; and an audio signal controlling means that controls an audio signal input from a predetermined audio signal reproducing device based on the control parameter generated by the control parameter generating means such that a resonant band component of reproduced sound of the audio signal is suppressed to be short on a time axis.
Abstract:
A propagation delay tune correction apparatus comprising a means for generating a frequency spectrum signal by performing short-term Fourier transform on an audio signal; a means for setting a propagation delay time for each of a plurality of predetermined frequency bands a means for calculating a phase control amount for each of the plurality of predetermined frequency bands on a basis of the propagation delay time set for each of the plurality of predetermined frequency bands; a means for generating a phase control signal by smoothing the calculated phase control amount for each of the plurality of predetermined frequency hands; a means for controlling a phase of the frequency spectrum signal for each of the plurality of predetermined frequency bands on a basis of the generated phase control signal; and a means for generating an audio signal on which a propagation delay correction is performed by performing inverse short-term Fourier transform on the frequency spectrum signal of which the phase is controlled for each of the plurality of predetermined frequency bands.
Abstract:
Provided is a notification device and notification method that reduce the output and power consumption of an amplifier or the like and allow a user to sufficiently feel the presence or absence of notification through vibration. A notification device (1) includes a sweep signal generator (4) configured to generate a detection sweep signal by continuously changing the frequency in a frequency band in which a speaker (6) can cause a user to feel a signal in the form of vibration, a vibration detector (7) configured to detect vibration outputted from the speaker (6), and a sound measurement unit (8) configured to detect, as a sweep frequency band, a frequency band in which vibration indicates signal levels equal to or higher than a threshold.The sweep signal generator (4) generates a resonance sweep signal by changing the frequency in the sweep frequency band and causes the speaker (6) to generate vibration.
Abstract:
A filter generator (100) generates a filter on the basis of band information (frequency) and gain characteristics (gain value) set by a user. The filter generator (100) obtains weighting factor information on the basis of the band information selected by the user and calculates a gain difference between a gain value used in a preceding filtering process and the new gain value selected by the user. The filter generator (100) then obtains a correction gain by multiplying the weighting factor information by the gain difference and generates a filter by multiplying a coefficient of the filter used in the preceding filtering process by the correction gain.
Abstract:
A signal processing device comprises: a band detecting means for detecting a frequency band which satisfies a predetermined condition from an audio signal; a reference signal generating means for generating a reference signal in accordance with a detection band by the band detecting means; a reference signal correcting means for correcting the generated reference signal on the basis of a frequency characteristic thereof; a frequency band extending means for extending the corrected reference signal up to a frequency band higher than the detection band; an interpolation signal generating means for generating an interpolation signal by weighting each frequency component within the extended frequency band in accordance with a frequency characteristic of the audio signal; and a signal synthesizing means for synthesizing the generated interpolation signal with the audio signal.
Abstract:
An audio processor (1) includes a first filter coefficient calculator (31) that calculates a first filter coefficient so as to correspond to first gains for respective bands set by a user, a second filter coefficient calculator (32) that if values of third gains for respective bands of the first filter coefficient are greater than an absolute value of a second gain set by the user, calculates a second filter coefficient by limiting the values of the third gains for the respective bands to the amplitude value of the second gain, and a filtering unit (35) that filters an audio signal that has been transformed into a frequency-domain signal, using the second filter coefficient.
Abstract:
A notification device (1) includes a sweep signal generator (3) that generates a sweep signal by changing the frequency of a predetermined wave at a constant speed in a frequency band which allows exciters (EX1, EX2, EX3, EX4) to generate a vibration, a sweep signal divider (4) that divides the sweep signal into a higher-band sweep signal in a higher-frequency band including an overlap frequency band and a lower-band sweep signal in a lower-frequency band including the overlap frequency band, a signal output determination unit (2) that determines from which exciters the higher-band sweep signal and lower-band sweep signal should be outputted, and an output signal adjuster (9) that makes an adjustment for outputting the higher-band sweep signal and lower-band sweep signal from the exciters determined.
Abstract:
A sound field measuring device (1) includes an external output unit (6) configured to output a measurement signal composed of a periodic function having a code length of 2n−1 (n is a natural number) to a speaker (9), a microphone (7) configured to pick up the measurement signal outputted from the speaker (9), a Fourier transform unit (12) configured to obtain frequency characteristics by Fourier transforming measurement sound picked up with a sample length of 2m (m is a natural number), a thinning-out unit (13) configured to remove line spectra except for the (k×2m-n+1)th line spectra (k=0, 1, 2, and the like) from the obtained frequency characteristics, and an averaging unit (14) configured to obtain averaged frequency characteristics of a sound field on the basis of frequency characteristics thinned-out.
Abstract:
A sound field measuring device (1) obtains frequency characteristics by collecting output sound outputted from a pair of speakers (101a, 101b) installed at a narrow interval. A low-pass filter (22a) extracts low-range components of a first measurement signal. A high-pass filter (22b) extracts mid/high-range components of a second measurement signal different from the first measurement signal. A combined signal generation unit (22c) generates a combined signal by combining the low-range components of the first measurement signal and the mid/high-range components of the second measurement signal. An external output unit (6) outputs the first measurement signal to an audio system (102). A microphone (7) collects the first measurement signal and the combined signal simultaneously outputted from the pair of speakers. A Fourier transform unit (13) obtains the frequency characteristics of a sound field by Fourier transforming the signals collected.
Abstract:
The present invention provides a vibration audio system for transmitting an audio signal outputted from a sound source to a listener in the form of vibration while reducing output level of the signal and power consumption. The system includes an envelope detection unit (204) for detecting an envelope signal of the audio signal outputted from a sound source, a vibration transmission member for allowing the listener to perceive vibration of a low-frequency sound outputted from a low-frequency output speaker that outputs audio signals, and a frequency conversion unit (205) for generating an audio signal frequency-converted on the basis of resonant frequencies by multiplying the envelope signal by sine waves having the same frequencies as resonance frequencies obtained from an impulse response of the low-frequency output speaker disposed in the vibration transmission member. The audio signal frequency-converted by the frequency conversion unit (205) is outputted from the low-frequency output speaker.