Abstract:
A portable electronic device using a fixed main heat-dissipating module and a detachable auxiliary heat-dissipating module for contacting the fixed main heat-dissipating module. The detachable auxiliary heat-dissipating module includes an outer casing structure and an inside mounted heat-dissipating structure. The outer casing structure includes a detachable casing detachably disposed inside a predetermined receiving groove of the portable electronic device and an electrical connector electrically connected to the portable electronic device. The inside mounted heat-dissipating structure is disposed inside the detachable casing. The inside mounted heat-dissipating structure includes an inside mounted heat-dissipating fan, a plurality of inside mounted heat-dissipating fins, a pump, and a circulation pipe. The circulation pipe has a contact portion exposed from the detachable casing to directly contact the fixed main heat-dissipating module, such that heat generated by the fixed main heat-dissipating module is partially transmitted to the circulation pipe through the contact portion.
Abstract:
A liquid cooling heat dissipation structure includes a heat-conducting substrate, a fluid-splitting board, a fluid-conducting board, and a liquid supply module. The heat-conducting substrate has a heat-conducting body contacting a heat generation source and a plurality of heat-dissipating fins disposed on the heat-conducting body. The fluid-splitting board is disposed on the heat-dissipating fins. The fluid-conducting board is disposed on the fluid-splitting board. The liquid supply module includes an external cover body detachably disposed on the heat-conducting body and at least two pumps detachably disposed on the external cover body. The external cover body has at least one liquid inlet and at least one liquid outlet, and cooling liquid flows into the external cover body through the at least one liquid inlet and flows out of the external cover body through the at least one liquid outlet by driving one or all of the at least two pumps.
Abstract:
A portable electronic device using a fixed main heat-dissipating module and a detachable auxiliary heat-dissipating module for contacting the fixed main heat-dissipating module. The detachable auxiliary heat-dissipating module includes an outer casing structure and an inside mounted heat-dissipating structure. The outer casing structure includes a detachable casing detachably disposed inside a predetermined receiving groove of the portable electronic device and an electrical connector electrically connected to the portable electronic device. The inside mounted heat-dissipating structure is disposed inside the detachable casing. The inside mounted heat-dissipating structure includes an inside mounted heat-dissipating fan, a plurality of inside mounted heat-dissipating fins, a pump, and a circulation pipe. The circulation pipe has a contact portion exposed from the detachable casing to directly contact the fixed main heat-dissipating module, such that heat generated by the fixed main heat-dissipating module is partially transmitted to the circulation pipe through the contact portion.
Abstract:
A heat sink includes a base, a heat sink base, a bearing, a rotor, and a stator. The base includes a heat conduction plate and a support pillar disposed on the heat conduction plate. The heat sink base includes a support plate and heat sink fins disposed on the support plate. The support plate is correspondingly disposed over the heat conduction plate, and a gap is formed between the support plate and the heat conduction plate. A bearing is disposed between the support pillar and the heat sink base. A rotor is disposed on the heat sink base, the stator is disposed corresponding to the rotor and fixed on the base. The heat sink base rotates with respect to the support pillar by an electromagnetic effect between the rotor and the stator.
Abstract:
A thin fan with an axial airgap includes a base having a bottom plate, a circuit unit, a stator set, and a rotor set. The stator set includes at least one winding part, plural induced magnets connected to the winding part, and at least one winding set wound on the winding part. The rotor set includes a hub, plural blades disposed around the hub, and a permanent magnet disposed around a bottom side of the hub and above the induced magnets. The winding set is outside of the permanent magnet. A pivot shaft is between the hub and the bottom plate and includes a bearing sleeve and a rotating shaft inserted in the bearing sleeve. The winding sets are moved outside of the permanent magnet, which reduces the heights occupied by the winding sets and the PCB, facilitating the thinning of the fan.
Abstract:
A liquid cooling heat dissipation device includes a heat-dissipating module and a liquid supply module. The liquid supply module includes an outer cover body disposed on the heat-dissipating module and at least one pump disposed inside the outer cover body. The outer cover body has an inner space divided into a first independent space adjacent to the heat-dissipating module and a second independent space far away from the heat-dissipating module and insulated from the first independent space, the at least one pump includes a stator disposed inside the first independent space and a rotator disposed inside the second independent space, and the stator is closer to the heat-dissipating module than the rotator. The instant disclosure further provides an electronic device using the liquid cooling heat dissipation device.
Abstract:
In a gripper type dual stop-reversal quick-release connector structure, and its water supply device and water-cooling system, the connector structure includes a first joint having a first containing chamber, a first stop-reversal member installed in the first containing chamber and a second joint having a second containing chamber and a second stop-reversal member installed in the second containing chamber, and the first and second joints are engaged to abut first and second stop-reversal members with each other. The external periphery of the front end of the first joint has plural grippers and the front end of the second joint has a pipe connecting portion, and each gripper is sheathed on the pipe connecting portion, and the external periphery of the pipe connecting portion has a radial flange corresponsive to each gripper, so that each gripper may be latched onto the radial flange for fixation.
Abstract:
An external auxiliary heat dissipation device includes an external connection head module, a fluid driving module, a heat dissipation module, and a plurality of first pipes. The external connection head module includes a first carrier body and at least two first fluid connection heads disposed on the first carrier body. The first pipes connect to the first fluid connection head, the fluid driving module, and the heat dissipation module to form a first fluid pathway. The electronic system includes an internal connection head module and a plurality of second pipes. The second pipes connect to the internal connection head module to form a second fluid pathway. The internal connection head module is detachably connected to the external connection head module, so that the first and the second fluid pathways are in fluid communication with each other to form a loop fluid pathway.
Abstract:
A liquid cooling heat dissipation structure includes a heat conduction module, a heat dissipation module, and a liquid supply module. The heat conduction module includes a first heat-conducting substrate contacting at least one heat-generating source and a second heat-conducting substrate disposed on the first heat-conducting substrate. The heat dissipation module is disposed on the heat conduction module. The liquid supply module is detachably disposed on the heat conduction module to cover the heat dissipation module. The liquid supply module includes an external cover body and a radial-flow centrifugal impeller detachably disposed on the external cover body. The heat conductivity coefficient and the temperature uniformity of the heat conduction module is larger than the heat conductivity coefficient and the temperature uniformity of the heat dissipation module, and the heat-dissipating area of the heat dissipation module is larger than the heat-dissipating area of the heat conduction module.
Abstract:
A fan structure with a wear resistant film coated shaft liner includes a stator, a fan blade and a fan shield. The stator includes an axle center at a center portion thereof. The fan blade comprises a blade wheel, a shaft liner arranged at a center of the blade wheel and extended axially therefrom, a plurality of blades arranged to circumference the blade wheel externally and a magnetic unit arranged on the blade wheel. The fan shield covers the fan blade externally and includes a fixation portion for securing the axle center. The shaft liner of the fan blade includes an axial hole in order to allow the axle center of the stator to pivotally attach thereto. The axial hole is of a blind hole shape, and an inner wall surface of the axial hole is coated with a wear resistant film in contact with the axle center.