Abstract:
A microwave antenna having a curved configuration is described herein. The antenna portion is formed into various shapes whereby the antenna substantially encloses, by a partial or complete loop or enclosure, at least a majority of the tissue to be irradiated. When microwave energy is delivered through the antenna, the curved configuration forms an ablation field or region defined by the curved antenna and any tissue enclosed within the ablation region becomes irradiated by the microwave energy. The microwave antenna is deployed through one of several methods, and multiple curved antennas can be used in conjunction with one another. Moreover, RF energy can also be used at the distal tip of the antenna to provide a cutting tip for the antenna during deployment in tissue.
Abstract:
An electrosurgical energy channel splitter apparatus includes a channel input a plurality of channel outputs, and a controller. The channel input is configured to receive electrosurgical energy from an electrosurgical energy source. Each channel output is configured to couple to a respective electrosurgical device. The controller is coupled to the channel input and the plurality of channel outputs. The controller is configured to selectively direct the electrosurgical energy from the channel input to one of the plurality of channel outputs.
Abstract:
An electrosurgical energy channel splitter apparatus includes a channel input a plurality of channel outputs, and a controller. The channel input is configured to receive electrosurgical energy from an electrosurgical energy source. Each channel output is configured to couple to a respective electrosurgical device. The controller is coupled to the channel input and the plurality of channel outputs. The controller is configured to selectively direct the electrosurgical energy from the channel input to one of the plurality of channel outputs.