Abstract:
A field emitter source and method for making same. An x-ray and a high energy electron source is fabricated from the field emitter. The field emitter source composition comprises carbon black and a mixing medium. An alternative method of field emitter formulation includes providing a quantity of silica with the carbon black and a mixing medium. An x-ray source comprises a substrate and a carbon black field emitter composition provided along a surface of the substrate and an extraction grid to pull electrons from the field emitter film and a metal film biased at high voltage to accelerate the electrons. A conductive film is further provided along an upper support structure of the source, such that when the conductive film is struck by the accelerated electrons, the upper support structure converts the impinging high-energy electrons into x-rays. A high energy electron source is also disclosed similar to the x-ray source but without a conductive film and with appropriate apertures to facilitate egress of the high energy electrons.
Abstract:
A method of operating and process for fabricating an electron source. A conductive rod is covered by an insulating layer, by dipping the rod in an insulation solution, for example. The rod is then covered by a field emitter material to form a layered conductive rod. The rod may also be covered by a second insulating material. Next, the materials are removed from the end of the rod and the insulating layers are recessed with respect to the field emitter layer so that a gap is present between the field emitter layer and the rod. The layered rod may be operated as an electron source within a vacuum tube by applying a positive bias to the rod with respect to the field emitter material and applying a higher positive bias to an anode opposite the rod in the tube. Electrons will accelerate to the charged anode and generate soft X-rays.
Abstract:
The invention relates to processes for preparing microelectromechanical (MEM) devices. Multimaterial sacrificial layers are used in the processes of the invention, thus allowing for the fabrication of sophisticated devices. The invention also relates to MEM devices prepared according to the processes of the invention and to pre-MEM devices.