Abstract:
A vital-signs patch for a patient monitoring system that includes a housing containing a sensor that makes physiological measurements of a patient, a transmitter, a receiver, a memory, and a processor. The processor periodically takes a measurement from the sensor, converts the measurement to a data record, and stores the data record in the memory. Upon receipt of a signal from another device, the processor retrieves at least a portion of the data record, converts the retrieved portion of the data record to a vital-sign signal, and causes the transmitter to transmit the vital-sign signal to the other device.
Abstract:
A vital-signs patch for a patient monitoring system is disclosed. The patch consists of a housing that is configured to be worn on the skin of a patient. The housing contains a radio, one or more sensor interfaces, a processor, and a battery. The processor can selectably turn portions of the processor off and on and selectably turn power off and on to at least a portion of the sensor interfaces and radio. The processor includes a timer that, each time the timer times out, will turn all the parts of the processor on and start a new timing period. When the processor receives a signal, the processor will turn off power to at least a portion of the processor and at least a portion of the sensor interfaces.
Abstract:
A vital-signs patch for a patient monitoring system that includes a housing containing a sensor that makes physiological measurements of a patient, a transmitter, a receiver, a memory, and a processor. The processor periodically takes a measurement from the sensor, converts the measurement to a data record, and stores the data record in the memory. Upon receipt of a signal from another device, the processor retrieves at least a portion of the data record, converts the retrieved portion of the data record to a vital-sign signal, and causes the transmitter to transmit the vital-sign signal to the other device.