Abstract:
A method and a device for differentiation of substances in a body fluid, such as blood, plasma or used peritoneal dialysis fluid, for example for hemodialysis. The device has a compartment having several inlets for entering a body fluid, a transition fluid and a diffusion fluid for flowing parallel with each other in laminar flow layers with substantially equal flow velocities. The transition fluid layer is interposed between the body fluid layer and the diffusion fluid layer. The compartment further has a first outlet for removing the body fluid and the transition fluid and a second outlet for removing the diffusion fluid. Pumps are arranged for controlling the flow velocities so that a marker substance, such as albumin, will not diffuse from the body fluid layer across the transition layer, during the passage of the body fluid from the inlet to the outlet of the compartment.
Abstract:
An article surveillance system for detecting the presence of articles in a detection zone (18) has at least one transmitter means (11, 13) and at least one receiver means (12, 15) for transmitting and receiving, respectively, electromagnetic radio-frequency signals in the detection zone or in proximity thereof. Each article is provided with a sensor or marker (20) operating as a transponder for transmitting an electromagnetic radio-frequency reply signal to the receiver means when receiving a signal from the transmitter means. Furthermore, the system has a coil arrangement (16) with driving means (17) for generating a low-frequent magnetic modulating field in the detection zone (18), and a controller (14) operatively connected to the transmitter means (11, 13), the receiver means (12, 15) and the coil arrangement (16, 17). Each sensor (20) is arranged to transmit a reply signal, the amplitude of which is modulated by the magnetic modulating field, and the receiver means is arranged to receive and to demodulate the amplitude-modulated reply signal. The controller (14) is arranged to supply modulating signals (.sup.i mod) to the coil arrangement (16, 17), to receive the demodulated signals (.sup.i demod) from the receiver means (12, 15) and to use the demodulated signals (.sup.i demod) when determining the position of the sensor (20) in relation to the detection zone (18).
Abstract:
The invention relates to a device for non-contact measuring of stresses including bending stresses in a bar-shaped body (1), e.g. a cylindrical bar, shaft or the like. In at least one transverse zone (2, 3) the bar (1) is provided with a number of thin strips (4) of an amorphous magnetoelastic material, distributed along the circumference of the zone, said strips (4) being affixed to the circumferential surface of the zone and extending at a pitch angle therealong, a preferably at a pitch angle of 45.degree.. Means (5) are provided for generating a magnetic field over said zone (2, 3) and a pick up coil (6-13) encircling the bar is provided for each zone (2, 3), said pick up coil being connected to a measuring unit (16, 16A) for indicating signals generated in the coil. According to the invention each pick up coil (6-13) encircling the bar (1), which is associated with a strip zone (2, 3), is oriented in relation to the bar (1) in such a manner that the magnotosensitive axis of the pick up coil includes an acute angle, preferably an angle of 45.degree., with the axis of the bar (1) in the strip zone.
Abstract:
A label for marking and remote detection of objects has a capsular housing (10, 11) of a material, which in non-magnetic, electrically non-conductive as well as resistant against external influence, the housing consisting of a lower portion (10) and a cover (11), between which a cavity (12) is formed, and at least one elongated sensor element (13) arranged in the cavity (12), the sensor element being made from an amorphous magneto-elastic material with high magneto-mechanical coupling. On all its interior surfaces facing the cavity (12), the housing (10, 11) is provided with fine bristles or fibers (14), the number, length and density of which have been selected for receiving the sensor element (13) in a way, such that the sensor element (13) when resonating, will maintain its straightness and will be allowed to oscillate in the longitudinal direction thereof essentially free from losses, with no harmful influence from bending or torsional forces, and with no risk of losing energy due to friction or contact with the inside of the housing (10, 11).
Abstract:
A method for coding remotely detectable labels (10), whereby at least two elements (18, 19), the characteristics of which being changed by an external magnetic field, are arranged to form a label (10), the label (10) is exposed to a biasing magnetic field covering an interrogation volume (11), that is larger than the label, and the resonance frequency of the elements (18, 19), which is changed by the magnetizing field strength (H) of the magnetic field, is detected. The elements on each label (10) are oriented in predetermined angular relations with respect to each other so as to provide an identity for the label (10) determined by the angular relations, and the elements are exposed to a sequence of different field conditions. All possible combinations of as many magnetic field components as there are elements are compiled, and the magnetic field components are arranged in possible angular relations in the label (10). All angular relations or codes, which may be correct for different element combinations, are determined, and the determination is repeated until only one code for each unique element combination remains.
Abstract:
A method for excitation and detection of magnetic resonance elements (10) in an interrogation zone (11), whereby a magnetic excitation signal is generated by at least one excitation means (12) and is supplied to the resonance element, so as to force the resonance element (10) into mechanical self-oscillation, and whereby a magnetical signal caused by the self-oscillation is detected. The excitation signal is generated by at least two excitation means (12) being located at a distance from each other, whereby a symmetry plane (14) for the excitation signal is obtained between the excitation means (12). The magnetic signal caused by the self-oscillation is symmetrically recorded at both sides of the symmetry plane (14), and the resonance elements are placed between an excitation means (12) and the symmetry plane (14), the recorded signal thereby containing the magnetic signal caused by the self-oscillation, but lacking the excitation signal.
Abstract:
A marker for remote detection of articles has an elongated sensor element with magnetic and electric properties. The elongated sensor element provides an electromagnetic reply signal when receiving an electromagnetic input signal. The elongated sensor element modulates the electromagnetic reply signal in response to an external magnetic modulating field. The marker also has means positioned in a vicinity of the elongated sensor element in the marker. The means is adapted to influence either the magnetic or the electric properties of the elongated sensor element in response to incident electromagnetic or magnetic energy, so that either the electromagnetic reply signal itself or the modulation thereof is substantially changed from an active state to a deactivated state.
Abstract:
The invention relates to a method and a device for remote sensing of objects, said method including the steps of marking said objects with at least one label (10) comprising at least one electrical resonant circuit (14) having an induction means (11) and a capacitor means (12), exciting said resonant circuit (14) to resonance at a resonant frequency, and detecting said resonant frequency of said resonant circuit (14) by the electromagnetic energy transmitted from said resonant circuit (14). An element (13) of a magnetic material having a varying permeability is coupled inductively to said induction element (11). The resonant frequency of said resonant circuit (14) is affected by the permeability of said element (13) of magnetic material, and said element (13) of magnetic material is exposed to an external and spatially heterogenous magnetic bias field through which the permeability of said element (13) of magnetic material is controlled. The invention relates also to methods for coding labels and for noise suppression of signals received from said labels.
Abstract:
Electronic identification device includes a circuitry (10) for generating and emitting an electromagnetic field and a plurality of transponder units (11). Each of the transponder unit includes a storing circuitry (12) for storing identification data, and a transmitting circuitry (13) for transmitting a signal including the identification data when the transponder unit (11) has been exposed to the electromagnetic field. The electronic identification device further includes a receiving circuitry (14) for receiving the signal and for decoding the identification data. At least one element (15) of a material, having the magnetic or electrical properties being influenced by external magnetic fields, is disposed on or in the absolute vicinity of the transponder unit (11), and a magnetic field generating circuitry (16) for generating a magnetic field is provided at an interrogation zone (17) to activate any element (15) appearing in the interrogation zone (17). A processing circuitry (18) is provided in the transponder unit (11) to modify the signal in dependence of the magnetic field activating the element (15).
Abstract:
A method and a device for differentiation of substances in a body fluid, such as blood, plasma or used peritoneal dialysis fluid, for example for hemodialysis. The device has a compartment having several inlets for entering a body fluid, a transition fluid and a diffusion fluid for flowing parallel with each other in laminar flow layers with substantially equal flow velocities. The transition fluid layer is interposed between the body fluid layer and the diffusion fluid layer. The compartment further has a first outlet for removing the body fluid and the transition fluid and a second outlet for removing the diffusion fluid. Pumps are arranged for controlling the flow velocities so that a marker substance, such as albumin, will not diffuse from the body fluid layer across the transition layer, during the passage of the body fluid from the inlet to the outlet of the compartment.