Abstract:
Embodiments disclosed herein relate to OFDM based data communication systems, and more particularly to mitigate Downlink-Downlink, Downlink-Uplink, Uplink-Downlink, Uplink-Uplink interference from same/adjacent channel in heterogeneous/homogeneous networks employing dynamic DL/UL configurations in OFDM based data communication systems.
Abstract:
Embodiments herein provide an Orthogonal Frequency Division Multiple Access (OFDMA) method for performing Orthogonal Frequency Division Multiplexing (OFDM) based communication in a wireless communication system, comprising allocating by an OFDM apparatus a resource for data in a two-step frequency-domain assignment process as (a) indicating at least one subband, and (b) indicating at least one Resource Blocks (RBs) within the at least one subband.
Abstract:
A communication network comprising of at least one remote base station; and a plurality of antenna ports connected to the at least one remote base station; wherein the remote base station controls the plurality of antenna ports. The remote base station is configured for defining mutually exclusive entry and exit points for the antenna ports in at least one of time; or frequency. Also, disclosed herein is a communication network comprising of at least one network controller and at least one base station, wherein the network controller is configured for assigning entry and exit points for each base station.
Abstract:
A system (102) and method (200) of processing a bit stream for transmission over a wireless communication network (100) is described. The method comprises mapping, by a transmitting node (102), a bit stream to obtain at least one modulation symbol. A set of modulation symbols may be selected from the at least one modulation symbol based on one or more predefined precoding criteria, for enabling transform-precoding of the set of modulation symbols. The transform-precoding of the set of modulation symbols may be performed to obtain precoded symbols.
Abstract:
Embodiments herein provides a method and apparatus for data communication in an OFDM system. The method comprising receiving by a second OFDM apparatus a plurality of parameters, a signal comprising data and at least one of a Reference Signal (RS) and a message from a first OFDM apparatus. The plurality of parameters comprises at least one of a numerology of the first apparatus, a numerology of the second apparatus, a ratio of numerology of the first apparatus to the second apparatus and a measurement window. The method includes filtering a desired band comprising the at least one of the RS and the message from the received signal, removing a cyclic prefix from the filtered signal, and decoding at least one of the RS and the message from the signal with adjusting a circular shift in the set of symbols based on the plurality of parameters.
Abstract:
Accordingly, embodiments herein disclose a method and system for novel signaling schemes for 5G New Radio. The method includes determining a subcarrier spacing (SCS) of a Bandwidth Part (BWP), a size of the BWP, and a location of the BWP. Further, the method includes generating a BWP configuration comprising the SCS of the BWP, the size the BWP, and the location of the BWP. Further, the method includes indicating the BWP configuration to a User Equipment.
Abstract:
Embodiments herein provide an OFDMA method for performing OFDM based communication in a wireless communication system. The OFDMA method includes splitting a carrier bandwidth into a number of subbands and modulating resource units in each of the subbands with data symbols in a parallel manner. Further, multiplexing the resource units by transforming each of the modulated resource units through a plurality of unitary transformations at a stage. Further, generating an output by performing a parallel to serial conversion of the transformed resource units. Further, the OFDMA method includes generating an OFDM signal by multiplexing an output from at least one of the previous stage to another stage by transforming the output through a unitary transformation for a defined number of times. Furthermore, the OFDMA method includes transmitting the OFDM signal over a wireless channel in the wireless network system.
Abstract:
Embodiments herein provide a method and system for managing Grant-free data transmission in a radio communication network. The proposed method includes composing, by a Base Station (BS), a Select Signal (SS) for a transceiver device, where the SS is configured to control a grant-free data transmission from the transceiver device. Further, the proposed method includes transmitting, by the BS, the SS to the transceiver device. Further, the proposed method includes receiving, by a transceiver device, the SS from the BS. Further, the proposed method includes decoding, by the transceiver device, the SS and furthermore, the proposed method includes controlling, by the transceiver device, a data transmission by one of activating the grant-free data transmission from the transceiver device in response to successful decoding of the SS, and deactivating the grant-free data transmission from the transceiver device in response to unsuccessful decoding of the SS.
Abstract:
Embodiments herein provides a method and apparatus for data communication in an OFDM system. The method comprising receiving by a second OFDM apparatus a plurality of parameters, a signal comprising data and at least one of a Reference Signal (RS) and a message from a first OFDM apparatus. The plurality of parameters comprises at least one of a numerology of the first apparatus, a numerology of the second apparatus, a ratio of numerology of the first apparatus to the second apparatus and a measurement window. The method includes filtering a desired band comprising the at least one of the RS and the message from the received signal, removing a cyclic prefix from the filtered signal, and decoding at least one of the RS and the message from the signal with adjusting a circular shift in the set of symbols based on the plurality of parameters.
Abstract:
Accordingly, the invention provides a method and apparatus for managing communication operations in an Orthogonal Frequency Division Multiplexing (OFDM) system. Further the method includes generating, by a first OFDM apparatus (100), a signal comprising data and at least one of a Reference Signal (RS) and a message, the signal is generated by repeating the at least one of the RS and the message over a set of OFDM symbols using a resource mapper, performing an Inverse Fourier Transform operation (IFFT) according to a numerology of a first OFDM apparatus, adding a Cyclic Prefix (CP) to the data, and adding a block CP to the at least one of the repeated RS and the message. Further, the method includes transmitting, by the first OFDM apparatus (100), the signal to a second OFDM apparatus (200).