Abstract:
An LED module and method of packing the same are provided. The LED module includes a substrate with at least one cavity therein, at least one LED unit positioned on portions of the substrate in the cavity, a circuit positioned above the LED unit and electrically connected to the LED unit, and a first capsulation material filling within the cavity.
Abstract:
A method of forming emitter tips for use in a field emission display. A dielectric layer, an insulating layer, and a conductor layer are formed on a substrate in sequence. An annular groove is formed the conductive layer and the insulating layer. A tip cavity with an insulating tip within is formed by isotropic wet etching. A molybdenum metal layer is formed on the insulating tip. The method of the present invention can substantially reduce the consumption of molybdenum.
Abstract:
A method of manufacturing a low temperature polysilicon film is provided. A first metal layer is formed on a substrate; and openings have been formed in the first metal layer. A second metal layer is formed on the first metal layer: and a hole corresponding to each of the openings is formed in the second metal layer. A silicon layer is formed on the second metal layer; a silicon seed is formed on the substrate inside each of the holes. After removing the first and the second metal layers, an amorphous silicon layer is formed on the substrate by using the silicon seed. Then a laser crystallization step is performed to form a polysilicon layer from the amorphous layer. Since the position of the silicon seed can be controlled, the size and distribution of the silicon grain and the number of the silicon crystal interface can also be controlled.
Abstract:
A method for forming a self-aligned low temperature polysilicon thin film transistor (LTPS TFT). First, active layers of a N type LTPS TFT (NLTPS TFT) and a P type LTPS TFT (PLTPS TFT) are formed on a substrate, and a gate insulating (GI) layer is formed on the substrate. Then, a source electrode, a drain electrode, and lightly doped drains (LDD) of the NLTPS TFT are formed. Further, gate electrodes of the NLTPS TFT and the PLTPS TFT are formed on the gate insulating layer. Finally, the gate electrode of the PLTPS TFT is utilized to form a source electrode and a drain electrode in the active layer of the PLTPS TFT.
Abstract:
An LED package structure including a carrier, an LED chip, an encapsulant and a PL material is provided, wherein the LED chip is disposed on the carrier for emitting light. The encapsulant encapsulates the LED chip. The PL material is distributed in the encapsulant. The PL material is suitable for being excited by the light emitted from the LED chip and scattering the light. Moreover, the present invention provides a novel PL material with a molecular formula of WmMon(Y,Ce,Tb,Gd,Sc)3+t+u(Al,Ga,Tl,In,B)5+u+2v(O,S,Se)12+2t+3u+3v+3m+3n: Ce3+, Tb3+, wherein 0
Abstract:
An LED package structure including a carrier, an LED chip, an encapsulant and a PL material is provided, wherein the LED chip is disposed on the carrier for emitting light. The encapsulant encapsulates the LED chip. The PL material is distributed in the encapsulant. The PL material is suitable for being excited by the light emitted from the LED chip and scattering the light. Moreover, the present invention provides a novel PL material with a molecular formula of WmMon(Y,Ce,Tb,Gd,Sb)3+t+u(Al,Ga,Tl,In,B)5+u+2v(O,S,Se)12+2t+3u+3v+3m+3n:Ce3+,Tb3+, wherein 0
Abstract:
Disclosed herein is a light module comprising a substrate, at least one light-emitting element on the substrate, a sealing cap on the substrate and covering the light-emitting elements, and a fluid in the space formed among the sealing cap, the light-emitting elements, and the substrate, such that heat dissipation is fast and yellowing of the encapsulating material is retarded.
Abstract:
An LED package structure including a carrier, an LED chip, an encapsulant and a PL material is provided, wherein the LED chip is disposed on the carrier for emitting light. The encapsulant encapsulates the LED chip. The PL material is distributed in the encapsulant. The PL material is suitable for being excited by the light emitted from the LED chip and scattering the light. Moreover, the present invention provides a novel PL material with a molecular formula of WmMon(Y,Ce,Tb,Gd,Sc)3+t+u(Al,Ga,Tl,In,B)5+u+2v(O,S,Se)12+2t+3u+3v+3m+3n: Ce3+, Tb3+, wherein 0
Abstract:
A wavelength converting substance comprises a wavelength converting material particle and a transparent layer on the wavelength converting material particle. The wavelength converting substance is a material possessing both wavelength converting and light scattering properties. Thus, when the wavelength converting substance is used in a light emitting device, the brightness is improved and the light mixing is more uniform than that of a traditional package. A light emitting device and an encapsulating material comprising the wavelength converting substance are also disclosed.
Abstract:
A light-emitting diode (LED) mainly includes a surface mounted package. The surface mounted package includes a substrate, two composite metal layers positioned on the substrate and being insulated from each other, an LED chip electrically connected to the composite metal layers, and a sealing member covering the LED chip. Each of the composite metal layers has a silver layer for preventing solder paste from penetrating into space between the sealing member and the composite metal layers and for reflecting light beams generated by the LED chip.