Abstract:
A system and method for cooling a plurality of connectors interfacing electrical and optical signals to circuit boards in an electronics cabinet, such as backplane connectors routing signals to circuit boards housed in card cage assemblies. Heat pipes coupled to the connectors efficiently remove heat from the connectors and sink the connector heat to a cold junction of a liquid cooling system, which cooling system may also extract heat from air flow cooling the circuit boards such that the system is room neutral, meaning that the ambient temperature remains constant during operation of the system. The heat connector cooling system is effective where connectors are outside of an air flow cooling envelope that may cool the circuit boards.
Abstract:
A system and method for cooling a plurality of connectors interfacing electrical and optical signals to circuit boards in an electronics cabinet, such as backplane connectors routing signals to circuit boards housed in card cage assemblies. Heat pipes coupled to the connectors efficiently remove heat from the connectors and sink the connector heat to a cold junction of a liquid cooling system, which cooling system may also extract heat from air flow cooling the circuit boards such that the system is room neutral, meaning that the ambient temperature remains constant during operation of the system. The heat connector cooling system is effective where connectors are outside of an air flow cooling envelope that may cool the circuit boards.