Abstract:
A method, a combustion engine controller, and a combustion engine incorporating the controller to implement the method are provided. The method includes determining a first dedicated exhaust gas recirculation (D-EGR) cylinder parameter value of a first D-EGR cylinder parameter associated with a first D-EGR cylinder of the combustion engine; and regenerating the first D-EGR cylinder responsive to the first D-EGR cylinder parameter value satisfying a threshold indicative of a carbon build-up level.
Abstract:
The present disclosure provides a method comprising adjusting at least one of an air-to-fuel ratio and an ignition spark characteristic of a first cylinder of an engine to produce an exhaust gas comprising a predetermined quantity of hydrogen; and providing the exhaust gas from the first cylinder to a second cylinder of the engine, wherein the exhaust gas comprising the hydrogen ignites a first fuel type in response to a compression event.
Abstract:
Systems and methods for controlling operation of dual fuel internal combustion engines in response to cylinder pressure based determinations are disclosed. The techniques control fuelling contributions from a first fuel source and a second fuel source to achieve desired operational outcomes in response to the cylinder pressure based determinations.
Abstract:
A fuel injector is provided comprising an outer housing, a nozzle housing disposed within the outer housing, a flow path between the outer housing and the nozzle housing, the flow path being coupled to a low pressure fuel source, and a circumferential gap in flow communication with the flow path and extending about a tip of the fuel injector between an outer surface of the nozzle housing and an inner surface of a combustion shield adjacent the injector tip. The circumferential gap is in flow communication with a drain gap between the outer housing and a bore for receiving the fuel injector, the drain gap routing the low pressure fuel away from the injector tip.
Abstract:
An apparatus includes a logistics manager that includes a processor. The logistics manager is communicably coupled to at least one of a first wireless communication module onboard a first vehicle and a second wireless communication module onboard a second vehicle. The logistics manager is configured to: receive, via the first wireless communication module, first data regarding the first vehicle, where the first data is provided by a first sensor module onboard the first vehicle; receive, via the second wireless communication module, second data regarding the second vehicle, where the second data is provided by a second sensor module onboard the second vehicle; and provide navigational commands to at least one of the first vehicle and the second vehicle based on a cost and benefit analysis in response to at least one the first data and the second data.
Abstract:
An apparatus includes a logistics manager that includes a processor. The logistics manager is communicably coupled to at least one of a first wireless communication module onboard a first vehicle and a second wireless communication module onboard a second vehicle. The logistics manager is configured to: receive, via the first wireless communication module, first data regarding the first vehicle, where the first data is provided by a first sensor module onboard the first vehicle; receive, via the second wireless communication module, second data regarding the second vehicle, where the second data is provided by a second sensor module onboard the second vehicle; and provide navigational commands to at least one of the first vehicle and the second vehicle based on a cost and benefit analysis in response to at least one the first data and the second data.
Abstract:
A method for operating a dual-fuel engine. Embodiments include receiving sensor input information, including information representative of a temperature of the engine. A first fuel, optionally diesel fuel, and a second fuel that is different than the first fuel, optionally natural gas, are supplied to the engine during a start mode when the engine temperature is below a normal operating temperature range. The first and second fuels can be supplied to the engine during a run mode when the engine temperature is within the normal operating temperature range.
Abstract:
A system, method, and engine control module for energy ignition management of a combustion engine. The method may be performed by the system or the engine control module. The method includes determining operating conditions of the combustion engine, setting ignition energy characteristics for a dedicated EGR cylinder and a non-dedicated EGR cylinder based on the operating conditions. The ignition energy characteristics include at least one of magnitude of energy, current, voltage, and ignition energy duration. At least one characteristic of the ignition energy characteristics for the non-dedicated EGR cylinder is different than a corresponding characteristic for the dedicated EGR cylinder. The method also includes energizing ignition aid plugs based on the ignition energy characteristics.
Abstract:
A method for operating a dual-fuel engine. Embodiments include receiving sensor input information, including information representative of a temperature of the engine. A first fuel, optionally diesel fuel, and a second fuel that is different than the first fuel, optionally natural gas, are supplied to the engine during a start mode when the engine temperature is below a normal operating temperature range. The first and second fuels can be supplied to the engine during a run mode when the engine temperature is within the normal operating temperature range.
Abstract:
Systems and methods for controlling operation of dual fuel internal combustion engines in response to cylinder pressure based determinations are disclosed. The techniques control fuelling contributions from a first fuel source and a second fuel source to achieve desired operational outcomes in response to the cylinder pressure based determinations.