Abstract:
The invention, belonging to the field of biological treatment of pollutants and functional materials, presents a method for the preparation of biofilm carrier with biochar fixed by thermoplastic resin. Extrusion grade polyethylene/polypropylene particles are used as the basic material. One or some combination of plant biochar, straw biochar, rice husk biochar, shell biochar, excess sludge and animal waste biochar are used as the functional material. The biofilm carrier with biochar fixed by thermoplastic resin is prepared by the screw extrusion process, which is a simple, flexible and controllable method, and possesses strong adaptability. The reactor with these biofilm carriers has high removal efficiency of refractory organic pollutants.
Abstract:
A method for preparing an electron donor biofilm carrier includes proportioning organic polymer basic raw material and functional modifiers in a range of set-point, mixing the materials, feeding the mixtures into a screw extruder, processing them into a bar-type material, and then cut the bar-type material into granules with the cutting machine, and feeding the granules into the screw extruder, processing them into pipes of various shapes according to the selected screw extruder heads, and then cutting the pipes according to the required size. The electron donor biofilm carrier is mainly used in anaerobic or anoxic suspended carrier biofilm technologies. Electron donors with a standard electrode potential below 100 Mv are used as the functional material for preparation of electron donor biofilm carrier.
Abstract:
The invention discloses a wastewater processing method of hydrolysis-acidification enhanced by addition of zero-valent iron (ZVI), including the following steps: 3˜6 ZVI-filling layers are settled in the middle of an anaerobic hydrolysis-acidification reactor. Excess sludge taken from sewage treatment plant using as seed sludge is added into this anaerobic hydrolysis-acidification reactor for startup and domestication. In the present invention, ZVI are added into this anaerobic hydrolysis-acidification reactor to accelerate organic matters degradation and produce more acetic acids, accompanied with higher COD removal obtained. ZVI can be protected from rust in this anaerobic biological environment due to the air isolation. Also, ZVI can enhance anaerobic hydrolysis of wastewater through reducing refractory pollutants involved in wastewaters. This novel method made the effluent from the hydrolysis-acidification reactor present less COD concentration and simpler substrate form, benefiting for the following anaerobic methanogenesis or aerobic treatment.