Abstract:
A holder unit is movably provided in a tank body in such a manner that one end of the holder unit is movably connected to a rotation supporting portion formed on a bottom wall of the tank body. A manual lever is connected to the other end of the holder unit. When the manual lever is pulled up, the holder unit is rotated around the rotation supporting portion, so that the other end is located in an entrance space formed at a position adjacent to a tank opening. A pump module is inserted into the tank body through the tank opening and attached to the holder unit. Then, the holder unit is pushed down by the manual lever to a pump installation position, in which the other end of the holder unit is located in an installation space formed on the bottom wall. The holder unit is engaged with a holding portion formed in the tank body, so that the holder unit and the pump module are stably held at the pump installation position.
Abstract:
A fuel supply device includes a pump unit, a lid unit and a strut linking unit. The pump unit is located on a bottom of a fuel tank for discharging fuel from the fuel tank to an outside thereof. The lid unit is attached to an upper wall of the fuel tank to close an opening formed in the upper wall. The lid unit has a fuel discharge port. The strut linking unit connects the lid unit to the pump unit. The strut linking unit includes an upper-side strut member, which is formed as an independent component from the lid unit. The strut linking unit includes a lower-side strut member, which is movably connected to the upper-side strut member in a vertical direction. The upper-side strut member is connected to the lid unit by a snap-fit connection. A connecting portion between the upper-side strut member and the lid unit has a stress concentration portion, which is preferentially damaged when an external force is applied to the strut linking unit.
Abstract:
In a pressure regulator, a valve element nozzle is supported by a diaphragm, which partitions between an inlet portion and an outlet portion. The outlet portion includes an inner cover and an outer cover. The inner cover receives an adjusting spring in an inside space of the inner cover. A primary communication hole is formed in the inner cover to oppose the valve element nozzle, and a secondary communication hole is formed in the inner cover at a location, which is on a radially outer side of the primary communication hole. The outer cover covers the inner cover and thereby forms a fuel space, which is communicated with the inside space through the primary and secondary communication holes, at a location between the inner cover and the outer cover.
Abstract:
A suction filter includes a filter element disposed in a fuel tank and filtering a stored fuel that is a fuel stored in the fuel tank by allowing the stored fuel passing the filter element into an inner space, a dividing wall element disposed to divide the inner space into a first space, into which a filtered fuel that is the fuel filtered by the filter element flows, and a second space, to which an intake port drawing in the filtered fuel is opened, and enclosing the first space together with the filter element and enclosing the second space together with the filter element, and a passage element including an inflow port opened to the second space and an outflow port to which an intake pressure is applied by the intake port and defining a flow passage through which filtered fuel flows from the inflow port toward the outflow port.
Abstract:
In a fuel tank, a pressure regulator is placed at an outside of a sub-tank and regulates a pressure of fuel of a pressure-regulation path, which is discharged from a fuel pump and is fed toward an outside of the fuel tank. A fuel recovery passage portion recovers excess fuel, which becomes excess at the pressure-regulation path, to the sub-tank. The sub-tank has an opening at a location that is higher than the suction filter. The fuel recovery passage portion is inserted from the outside of the sub-tank into the inside of the sub-tank through the opening while a gap is formed between the fuel recovery passage portion and the opening, so that the fuel recovery passage portion has an excess fuel outlet that discharges the excess fuel at a location that is on an inner side of the opening where an inside of the sub-tank is placed.
Abstract:
A valve member is movable with first and second partition member and opens and closes a first pressure chamber with respect to a return passage. The first partition member partitions the first pressure chamber from a second pressure chamber. The second partition member partitions the second pressure chamber from a third pressure chamber. The first, second, and third pressure chambers cause fuel from a fuel flow passage to flow therethrough. A switching unit switches an opening and closing state of the second pressure chamber and the third pressure chamber with respect to the fuel flow passage and the return passage.
Abstract:
A filter element is installed in an inside of a fuel tank to filter stored fuel by passing the stored fuel into an inside space through the filter element. A partition wall element is exposed in the inside space. The partitioning portion includes: a partitioning portion that is placed to partially partition the inside space into a first space, into which filtered fuel filtered through the filter element is supplied, and a second space, in which a suction inlet for suctioning the filtered fuel opens, wherein the partitioning portion conducts the filtered fuel from the first space to the second space; and a communication window that is formed in the partitioning portion at a location, which is offset to a side that is away from the suction inlet, wherein the communication window communicates between the first space and the second space while bypassing the partitioning portion.
Abstract:
The present disclosure provides a suction filter that filters a fuel inside a fuel tank of a vehicle. The suction filter includes a filter element, a partitioning wall element, a passage element, and an open/close valve. The filter element is disposed in and exposed inside of the fuel tank. The filter element filters a stored fuel stored in the fuel tank. The partitioning wall element is arranged in the inside space to divide the inside space into a first space and a second space that is lower than the first space. The inlet to take in the filtered fuel is open in the second space. The passage element defines an inflow opening open in the first space, an outflow opening to which a negative suction pressure is applied through the inlet, and a flow passage through which the filtered fuel flows. The open/close valve closes the inflow opening when a liquid level of the filtered fuel is above the partitioning wall element and that closes the inflow opening when the liquid level is below the partitioning wall element.
Abstract:
A common width direction, along which a passage width of a communication passage section and a passage width of a pressurizing passage are defined, is perpendicular to an extending direction of a flow restricting passage section. A first passage wall surface and a second passage wall surface, which define the communication passage section therebetween, are opposed to each other in the common width direction. The flow restricting passage section opens in the first passage wall surface. The second passage wall surface is concavely curved relative to the first passage wall surface toward the flow restricting passage section, so that the passage width of the communication passage section is progressively reduced toward the flow restricting passage section within a predetermined range that is equal to or smaller than the passage width of the pressurizing passage.
Abstract:
A suction filter includes a filter element disposed in a fuel tank and filtering a stored fuel that is a fuel stored in the fuel tank by allowing the stored fuel passing the filter element into an inner space, a dividing wall element disposed to divide the inner space into a first space, into which a filtered fuel that is the fuel filtered by the filter element flows, and a second space, to which an intake port drawing in the filtered fuel is opened, and enclosing the first space together with the filter element and enclosing the second space together with the filter element, and a passage element including an inflow port opened to the second space and an outflow port to which an intake pressure is applied by the intake port and defining a flow passage through which filtered fuel flows from the inflow port toward the outflow port.