Abstract:
An iron powder and method of making an iron powder. The method includes a step of neutralizing an acidic aqueous solution containing a trivalent iron ion and a phosphorus-containing ion, with an alkali aqueous solution, so as to provide a slurry of a precipitate of a hydrated oxide, or a step of adding a phosphorus-containing ion to a slurry containing a precipitate of a hydrated oxide obtained by neutralizing an acidic aqueous solution containing a trivalent iron ion with an alkali aqueous solution. A silane compound is added to the slurry so as to coat a hydrolysate of the silane compound on the precipitate of the hydrated oxide. The precipitate of the hydrated oxide after coating is recovered through solid-liquid separation, the recovered precipitate is heated to provide iron particles coated with a silicon oxide, and a part or the whole of the silicon oxide coating is dissolved and removed.
Abstract:
A silicon oxide-coated iron powder has a small particle diameter, can achieve high in a high frequency band, and has high insulating property. In a method for producing the powder, a silicon alkoxide is added to a slurry containing iron powder having an average particle diameter of 0.25 μm or more and 0.80 μm or less and an average axial ratio of 1.5 or less dispersed in a mixed solvent of water and an organic material containing water in an amount of 1% by mass or more and 40% by mass or less. Then, a hydrolysis catalyst for the silicon alkoxide is added to perform silicon oxide coating, the method resulting in a silicon oxide-coated iron powder having the high μ′ in a high frequency band and the high insulating property.
Abstract:
There are provided a magnetoplumbite-type hexagonal crystal ferrite magnetic powder which can be suitably used as the material of a radio wave absorber having an excellent radio wave absorbing power in the 76 GHz band, and a method for producing the same. In a method for producing a magnetoplumbite-type hexagonal crystal ferrite magnetic powder, the method comprising the steps of: mixing powders of the raw materials of a magnetoplumbite-type hexagonal crystal ferrite magnetic powder, which is expressed by a compositional formula of AFe(12-x)AlxO19 (A is at least one selected from the group consisting of Sr, Ba, Ca and Pb, x=1.0 to 2.2), to obtain a mixture; granulating and molding the mixture to obtain molded bodies; firing the molded bodies to obtain fired bodies; and pulverizing the fired bodies, there are prepared a plurality of firing containers (firing scabbards 10), each of which has an opening of the upper face thereof and a notch (10a) formed in the upper portion of the side face thereof so as to be communicated with the outside thereof, each of the firing containers being filled with the molded bodies, and the firing containers being stacked in a plurality of stages so as to close the opening of the top face of the lower firing container, to fire the molded bodies in a firing furnace (20).
Abstract:
In magnetic parts such as inductors and antennas using magnetic metal powder, the complex component of a magnetic permeability, which represents a loss in a GHz band, has been high.A magnetic part formed from a soft magnetic metal powder including iron as a main component can reduce a loss factor in a kHz to GHz band. The soft magnetic metal powder has an average particle diameter of 100 nm or less, an axial ratio (=major axis length/minor axis length) of 1.5 or more, a coercive force (Hc) of 39.8 to 198.9 kA/m (500 to 2500 Oe), and a saturation magnetization of 100 Am2/kg or more.
Abstract:
A magnetic compound having a small dielectric loss and an antenna constituted by the magnetic compound and an electronic device incorporating the antenna are provided by a metal magnetic powder which is well dispersed in a resin having small dielectric loss, and a magnetic powder composite including: a metal magnetic powder; and one or more elements selected from carboxylic acid or its anhydride, aromatic carboxylic acid ester, and a derivative thereof, having a property that real part μ′ permeability is 1.45 or more, tan δμ is 0.1 or less, tan δε is 0.05 or less at a measuring frequency of 2 GHz, when a magnetic powder composite is prepared by adding 5 parts by mass of one or more elements selected from the carboxylic acid or its anhydride, the aromatic carboxylic acid ester, and the derivative thereof to 100 parts by mass of the metal magnetic powder.
Abstract:
A method for producing a Fe—Co alloy powder suitable for an antenna includes steps, wherein when introducing an oxidizing agent into an aqueous solution containing Fe ions and Co ions to generate crystal nuclei and cause precipitation and growth of a precursor having Fe and Co as components, Co in an amount corresponding to 40% or more of the total amount of Co used for the precipitation reaction is added to the aqueous solution at a time after the start of the crystal nuclei generation and before the end of the precipitation reaction to obtain the precursor. Then, a dried product of the precursor is reduced to obtain a Fe—Co alloy powder. This Fe—Co alloy powder has a mean particle size of 100 nm or less, a coercive force Hc of 52.0 to 78.0 kA/m, and a saturation magnetization ss of 160 Am2/kg or higher.
Abstract:
An object is to provide a magnetic compound excellent in high frequency properties and excellent in mechanical strength, and its related items, using the polyarylene sulfide resin, and to provide a technique regarding the magnetic compound having a metal magnetic powder and a polyarylene sulfide resin, and satisfying both mechanical strength and high frequency properties.
Abstract:
In a magnetic component, such as an inductor and an antenna, produced with a metal magnetic powder, a complex number component of magnetic permeability that is a loss in the GHz band was high.A magnetic component obtained by molding a soft magnetic metal powder can have a reduced loss factor in the GHz band. The soft magnetic metal powder is characterized by containing iron as a main ingredient, and having an average particle size of not larger than 300 nm, a coercive force (Hc) of 16 to 119 kA/m (200 to 1500 Oe), a saturation magnetization of not less than 90 Am2/kg, and a volume resistivity of not less than 1.0×101 Ω·cm. The volume resistivity is determined by measuring, by a four probe method, a molded body formed by vertically pressurizing 1.0 g of the metal powder at 64 MPa (20 kN).