Abstract:
Embodiments of the invention are directed to a springless athermal lens assembly. In one embodiment, a spacer of a springless athermal lens assembly may compensate for defocus of the camera system due to thermal expansion of the lens assembly through micro wedge mechanisms coupling the spacer to an inner and outer barrel. The inner barrel comprises a lens cell assembly and a body having a micro wedge slot. The outer barrel comprises a body having a micro wedge slot. The spacer comprises an inner barrel micro wedge and an outer barrel micro wedge. The spacer is configured to be physically coupled to the inner barrel through engagement of the inner barrel micro wedge and the inner barrel micro wedge slot. Further, the spacer is configured to be physically coupled to the outer barrel through the engagement of the outer barrel micro wedge and the outer barrel micro wedge slot.
Abstract:
Systems and methods for controlling stray light reflections are provided. An optical system includes an aperture having an optical axis passing therethrough, one or more optical elements disposed along an optical path, and a detector disposed along the optical path. The system further includes an optical housing disposed between the aperture and the detector. The interior surface of the optical housing includes a predetermined surface feature adapted to control reflections of stray light along the optical path between the aperture and the detector. A method of fabricating an optical housing includes forming a pattern comprising a predetermined surface feature on an interior surface of the optical housing. The predetermined surface feature is configured to control reflections of stray light along an optical path between an aperture at a proximal end of the optical housing and a detector at a distal end of the optical housing.
Abstract:
Systems and methods for controlling stray light reflections are provided. An optical system includes an aperture having an optical axis passing therethrough, one or more optical elements disposed along an optical path, and a detector disposed along the optical path. The system further includes an optical housing disposed between the aperture and the detector. The interior surface of the optical housing includes a predetermined surface feature adapted to control reflections of stray light along the optical path between the aperture and the detector. A method of fabricating an optical housing includes forming a pattern comprising a predetermined surface feature on an interior surface of the optical housing. The predetermined surface feature is configured to control reflections of stray light along an optical path between an aperture at a proximal end of the optical housing and a detector at a distal end of the optical housing.
Abstract:
The disclosure describes systems and apparatuses that include a focusable lens, as well as methods for focusing the optical lens. The focusable lens system includes a single element lens having a concave refractive surface characterized by a first radius of curvature and a convex refractive surface characterized by a second radius of curvature larger than the first radius of curvature. A detector element generates electrical signals representative of infrared rays refracted by the single element lens and incident on the detector element, and an aperture stop is disposed around an optical axis of the optical system and secured in a constant position relative to the detector element, the aperture stop configured to limit a cone angle of rays refracted by the single element lens. They system also includes image processing circuitry configured to generate digital pixilation data based on electrical signals generated by the detector element.
Abstract:
The disclosure describes systems and apparatuses that include a focusable lens, as well as methods for focusing the optical lens. The focusable lens system includes a single element lens having a concave refractive surface characterized by a first radius of curvature and a convex refractive surface characterized by a second radius of curvature larger than the first radius of curvature. A detector element generates electrical signals representative of infrared rays refracted by the single element lens and incident on the detector element, and an aperture stop is disposed around an optical axis of the optical system and secured in a constant position relative to the detector element, the aperture stop configured to limit a cone angle of rays refracted by the single element lens. They system also includes image processing circuitry configured to generate digital pixilation data based on electrical signals generated by the detector element.