Abstract:
A method for controlling a vapor compression system during start-up is disclosed. The rate of change, ΔT1, of the temperature of refrigerant entering the evaporator, and the rate of change, ΔT2, of the temperature of refrigerant leaving the evaporator are compared. Based on the comparing step, a refrigerant filling state of the evaporator is determined. The opening degree of the expansion device is then controlled according to a first control strategy in the case that it is determined that the evaporator is full or almost full, and according to a second control strategy in the case that it is determined that the evaporator is not full. Thereby it is ensured that a maximum filling degree of the evaporator is quickly reached, without risking that liquid refrigerant passes through the evaporator.
Abstract:
A method for controlling a vapour compression system during start-up is disclosed. The rate of change, ΔT1, of the temperature of refrigerant entering the evaporator, and the rate of change, ΔT2, of the temperature of refrigerant leaving the evaporator are compared. Based on the comparing step, a refrigerant filling state of the evaporator is determined. The opening degree of the expansion device is then controlled according to a first control strategy in the case that it is determined that the evaporator is full or almost full, and according to a second control strategy in the case that it is determined that the evaporator is not full. Thereby it is ensured that a maximum filling degree of the evaporator is quickly reached, without risking that liquid refrigerant passes through the evaporator.