Abstract:
Systems and methods for reducing metadata in a write-anywhere storage system are disclosed herein. The system includes a plurality of clients coupled with a plurality of storage nodes, each storage node having a plurality of primary storage devices coupled thereto. A memory management unit including cache memory is included in the client. The memory management unit serves as a cache for data produced by the clients before the data is stored in the primary storage. The cache includes an extent cache, an extent index, a commit cache and a commit index. The movement of data and metadata is by an interval tree. Methods for reducing data in the interval tree increase data storage and data retrieval performance of the system.
Abstract:
Systems and methods for reducing metadata in a write-anywhere storage system are disclosed herein. The system includes a plurality of clients coupled with a plurality of storage nodes, each storage node having a plurality of primary storage devices coupled thereto. A memory management unit including cache memory is included in the client. The memory management unit serves as a cache for data produced by the clients before the data is stored in the primary storage. The cache includes an extent cache, an extent index, a commit cache and a commit index. The movement of data and metadata is by an interval tree. Methods for reducing data in the interval tree increase data storage and data retrieval performance of the system.
Abstract:
Systems and methods for reducing metadata in a write-anywhere storage system are disclosed herein. The system includes a plurality of clients coupled with a plurality of storage nodes, each storage node having a plurality of primary storage devices coupled thereto. A memory management unit including cache memory is included in the client. The memory management unit serves as a cache for data produced by the clients before the data is stored in the primary storage. The cache includes an extent cache, an extent index, a commit cache and a commit index. The movement of data and metadata is by an interval tree. Methods for reducing data in the interval tree increase data storage and data retrieval performance of the system.
Abstract:
The present invention is directed to data migration, and particularly, Parity Group migration, between high performance data generating entities and data storage structure in which distributed NVM arrays are used as a single intermediate logical storage which requires a global registry/addressing capability that facilitates the storage and retrieval of the locality information (metadata) for any given fragment of unstructured data and where Parity Group Identifier and Parity Group Information (PGI) descriptors for the Parity Groups' members tracking, are created and distributed in the intermediate distributed NVM arrays as a part of the non-deterministic data addressing system to ensure coherency and fault tolerance for the data and the metadata. The PGI descriptors act as collection points for state describing the residency and replay status of members of the Parity Groups.
Abstract:
Data storage systems and methods for storing data are described herein. The storage system includes a first storage node is configured to issue a first delivery request to a first set of other storage nodes in the storage system, the first delivery request including a first at least one data operation for each of the first set of other storage nodes and issuing at least one other delivery request, while the first delivery request remains outstanding, the at least one other delivery request including a first commit request for each of the first set of other storage nodes. The first node causes the first at least one data operation to be made active within the storage system in response to receipt of a commit indicator along with a delivery acknowledgement regarding one of the at least one other delivery request.
Abstract:
The present invention is directed to data migration, and particularly, Parity Group migration, between high performance data generating entities and data storage structure in which distributed NVM arrays are used as a single intermediate logical storage which requires a global registry/addressing capability that facilitates the storage and retrieval of the locality information (metadata) for any given fragment of unstructured data and where Parity Group Identifier and Parity Group Information (PGI) descriptors for the Parity Groups' members tracking, are created and distributed in the intermediate distributed NVM arrays as a part of the non-deterministic data addressing system to ensure coherency and fault tolerance for the data and the metadata. The PGI descriptors act as collection points for state describing the residency and replay status of members of the Parity Groups.
Abstract:
Systems and methods for reducing metadata in a write-anywhere storage system are disclosed herein. The system includes a plurality of clients coupled with a plurality of storage nodes, each storage node having a plurality of primary storage devices coupled thereto. A memory management unit including cache memory is included in the client. The memory management unit serves as a cache for data produced by the clients before the data is stored in the primary storage. The cache includes an extent cache, an extent index, a commit cache and a commit index. The movement of data and metadata is by an interval tree. Methods for reducing data in the interval tree increase data storage and data retrieval performance of the system.
Abstract:
Data storage systems and methods for storing data are described herein. The storage system includes a first storage node is configured to issue a first delivery request to a first set of other storage nodes in the storage system, the first delivery request including a first at least one data operation for each of the first set of other storage nodes and issuing at least one other delivery request, while the first delivery request remains outstanding, the at least one other delivery request including a first commit request for each of the first set of other storage nodes. The first node causes the first at least one data operation to be made active within the storage system in response to receipt of a commit indicator along with a delivery acknowledgement regarding one of the at least one other delivery request.