Abstract:
An unmanned aerial vehicle detector includes an unmanned aerial vehicle, a pump/detector combination on the unmanned aerial vehicle and a tube connected at a proximal end to the pump/detector combination. The pump/detector combination is configured to draw gas samples from a distal end of the tube to the detector and to detect a level of a gas drawn from within a prescribed distance above ground level. A processor determines the wind velocity at the unmanned aerial vehicle location.
Abstract:
Regardless of the presence of echo or uplink speech, a microphone signal is received at a small filter and this small filter is functionally and/or physically separate from an adaptive echo canceller filter. The signal is applied to the small filter and an error signal is determined from the signal utilizing the small filter. The small filter continuously adapts the received signals. A first adaptation factor is determined based at least upon the error signal and the microphone signal according to a first signal analysis approach and a second adaptation factor is determined based at least upon the microphone signal according to a second signal analysis approach. The first adaption factor is compared to the second adaptation factor and one of the first adaptation factor or the second adaptation factor is selected based upon at least one predetermined criteria. The selected adaptation factor is applied to the echo canceller filer to control the convergence of the echo canceller filter.
Abstract:
An unmanned aerial vehicle detector includes an unmanned aerial vehicle, a pump/detector combination on the unmanned aerial vehicle and a tube including a rigid section and a flexible section. The tube is connected at a proximal end to the pump/detector combination. The pump/detector combination is configured to draw gas samples from a distal end of the tube to the detector and to detect a level of a gas drawn from within a prescribed distance above ground level.
Abstract:
A speech signal is received at an input. At least one electrical value associated with the received speech signal is tracked. A dynamic adjustment of the speech signal is determined. The dynamic adjustment is selected at least in part so as to minimize a distortion and minimize an over-amplification of the speech signal based at least in part upon an analysis of the at least one electrical value. The dynamic adjustment is further selected to obtain a desired output signal characteristic for the speech signal presented at an output. The dynamic adjustment value is applied to the speech signal and the adjusted speech signal is presented at the output. The gain of the signal can also be limited to prevent over-amplification.
Abstract:
A continuous stream of noise is created from a plurality of input signals. A smoothing spectrum estimate is continuously calculated from the continuous stream of noise. Noise is responsively removed from a selected one of the plurality of input signals using the smoothing spectrum estimate. The removal of the noise from the selected input signal is performed substantially synchronously and in time alignment with the creating of the continuous stream of noise and the calculating of the smoothing spectrum estimate.
Abstract:
Residual frequency components of a reference signal are suppressed from an error signal. A magnitude of the frequency domain representation of the reference signal is divided by a magnitude of the frequency domain representation of LMS-filtered representation of the error signal to obtain a frequency domain ratio of the frequency domain representation of the reference signal to the frequency domain representation of the LMS-filtered signal. The frequency domain ratio of the frequency domain representation of the reference signal to the frequency domain representation of the LMS-filtered signal is multiplied by the frequency domain ratio of the frequency domain representation of the reference signal to the frequency domain representation of the LMS-filtered signal, to obtain a frequency domain signal having reduced residual frequency components of the reference signal.
Abstract:
Residual frequency components of a reference signal are suppressed from an error signal. A magnitude of the frequency domain representation of the reference signal is divided by a magnitude of the frequency domain representation of LMS-filtered representation of the error signal to obtain a frequency domain ratio of the frequency domain representation of the reference signal to the frequency domain representation of the LMS-filtered signal. The frequency domain ratio of the frequency domain representation of the reference signal to the frequency domain representation of the LMS-filtered signal is multiplied by the frequency domain ratio of the frequency domain representation of the reference signal to the frequency domain representation of the LMS-filtered signal, to obtain a frequency domain signal having reduced residual frequency components of the reference signal.
Abstract:
A system and method for managing a plurality of instrumented function components is disclosed. In one embodiment, operating information about the plurality of instrumented function components is received from an online safety availability application and status information for the plurality of instrumented function components is updated, within an asset management database, based upon the operating information. And based upon the status information, the plurality of instrumented function components are managed.
Abstract:
A container for scaling fish prevents the scattering of loosened scales from the fish during scaling. The present container has an open top with liquid impervious walls and floor. The floor slopes to a drain, which may pass through the floor or through a low point along one wall. The drain includes a guard or screen therein, to prevent passage of fish scales or similarly sized articles therethrough. The container is filled with water with the drain capped, or the container is placed in a sink or basin which is filled with water. A fish may then be placed in the container and scaled, with the viscosity and density of the water precluding scattering of the removed scales. When scaling has been completed, the water is drained from the container, with the scales carried to the drain by the water flow and captured by the guard for ease of removal.
Abstract:
An unmanned aerial vehicle detector includes an unmanned aerial vehicle, a pump/detector combination on the unmanned aerial vehicle and a tube including a rigid section and a flexible section. The tube is connected at a proximal end to the pump/detector combination. The pump/detector combination is configured to draw gas samples from a distal end of the tube to the detector and to detect a level of a gas drawn from within a prescribed distance above ground level.