Abstract:
Systems and methods are provided to determine a time to provide guidance to a user regarding management of a physiologic condition such as diabetes. The determination may be based upon a model or pattern. The time to deliver guidance may be calculated to be useful to a user in the management of a glucose concentration level.
Abstract:
Various examples are directed to systems and methods for measuring a parameter related to patient health. An analyte sensor system may detect that the analyte sensor system has been applied to a host and may store analyte data describing the host. The analyte sensor system may determine that sensor use at the analyte sensor system has terminated and upload stored analyte data to an upload computing device.
Abstract:
Techniques for data analysis and user guidance are provided. One or more current measurements of one or more current analyte levels for the user are received from a sensor. A pattern is generated based on the one or more current measurements and the one or more past measurements. A first alignment with a first user target is then determined based on the pattern, where the first user target relates to one or more of a mental state or physical state of the user. A first result is output to the user, based on the determined first alignment.
Abstract:
Provided are systems and methods using which users may learn and become familiar with the effects of various aspects of their lifestyle on their health, e.g., users may learn about how food and/or exercise affects their glucose level and other physiological parameters, as well as overall health. In some cases the user selects a program to try; in other cases, a computing environment embodying the system suggests programs to try, including on the basis of pattern recognition, i.e., by the computing environment determining how a user could improve a detected pattern in some way. In this way, users such as type II diabetics or even users who are only prediabetic or non-diabetic may learn healthy habits to benefit their health.
Abstract:
Provided are systems and methods using which users may learn and become familiar with the effects of various aspects of their lifestyle on their health, e.g., users may learn about how food and/or exercise affects their glucose level and other physiological parameters, as well as overall health. In some cases the user selects a program to try; in other cases, a computing environment embodying the system suggests programs to try, including on the basis of pattern recognition, i.e., by the computing environment determining how a user could improve a detected pattern in some way. In this way, users such as type II diabetics or even users who are only prediabetic or non-diabetic may learn healthy habits to benefit their health.
Abstract:
Measurements of biometric information of a user are obtained over time, such as blood glucose measurements. These biometric measurements are typically obtained by a wearable biometric information monitoring device being worn by the user. These biometric measurements are used by various different systems, such as a computing device of the user or a biometric information monitoring platform that receives biometric measurements from multiple different users. The biometric measurements are used for various security aspects, such as one or more of part of multi-factor authentication of the user, generating security keys (e.g., connection keys, encryption keys), identifying biometric measurements associated with different user identifiers but the same use, and protecting biometric measurements so as to be retrievable only by a recipient associated with an additional computing device, and so forth.
Abstract:
Various examples are directed to systems and methods for measuring a parameter related to patient health. An analyte sensor system may detect that the analyte sensor system has been applied to a host and may store analyte data describing the host. The analyte sensor system may determine that sensor use at the analyte sensor system has terminated and upload stored analyte data to an upload computing device.
Abstract:
Disclosed are systems and methods for secure and seamless set up and modification of bolus calculator parameters for a bolus calculator tool by a health care provider (HCP). In one aspect, a method for enabling HCP set up of a bolus calculator includes providing a server accessible by both an HCP and a patient; upon login by the HCP, displaying, or transmitting for display, a fillable form, the fillable form including one or more fields for entry of one or more bolus calculator parameters; receiving data from the fillable form, the data corresponding to one or more bolus calculator parameters; and upon login by the patient, transmitting data to a device associated with the patient, the transmitted data based on the received data, where the transmitted data corresponds to one or more of the bolus calculator parameters in a format suitable for entry to a bolus calculator.
Abstract:
Certain aspects of the present disclosure relate to a method of configuring an application with one or more application features. The method comprises receiving a request to configure the application for use by a user. The method further comprises identifying an objective for the user and identifying classifying information associated with the user, the classifying information including at least one of the objective, interest, ability, demographic information, disease progression information, or medication regimen information of the user. The method further comprises selecting a group of users based on one or more similarities between the user and the group of users. The method further comprises identifying the one or more application features based on the objective of the user and a correlation of each of the plurality of application features with the objective. The method further comprises configuring the application with the one or more application features.
Abstract:
Systems and methods disclosed provide ways for Health Care Professionals (HCPs) to be involved in initial patient system set up so that the data received is truly transformative, such that the patient not just understands what all the various numbers mean but also how the data can be used. For example, in one implementation, a CGM device is configured for use by a HCP, and includes a housing and a circuit configured to receive a signal from a transmitter coupled to an indwelling glucose sensor. A calibration module converts the received signal into clinical units. A user interface is provided that is configured to display a measured glucose concentration in the clinical units. The user interface is further configured to receive input data about a patient level, where the input data about the patient level causes the device to operate in a mode appropriate to the patient level.