Abstract:
A method and an apparatus for purifying a gas containing contaminants are disclosed. The gas is irradiated with an ultraviolet ray and/or a radiation ray so as to produce microparticles of the contaminants. The resultant microparticles of the contaminants are contacted with a photocatalyst. Then, the photocatalyst is irradiated with light so as to decompose the contaminants held in contact with the photocatalyst. Organic compounds, organosilicon compounds, basic gas and the like can be decomposed by the action of the photocatalyst. Even when these species are present at a low concentration, they can be concentrated locally by transforming into microparticles, and hence can be removed.
Abstract:
A method and an apparatus for purifying a gas containing contaminants are disclosed. The gas is irradiated with an ultraviolet ray and/or a radiation ray so as to produce microparticles of the contaminants. The resultant microparticles of the contaminants are contacted with a photocatalyst. Then, the photocatalyst is irradiated with light so as to decompose the contaminants held in contact with the photocatalyst. Organic compounds, organosilicon compounds, basic gas and the like can be decomposed by the action of the photocatalyst. Even when these species are present at a low concentration, they can be concentrated locally by transforming into microparticles, and hence can be removed.
Abstract:
A method and an apparatus for removing particles from a surface of an article, such as a semiconductor wafer in a clean room, are disclosed. The particles are supplied with an electric charge. Subsequently, an ultrasonic wave or a gas stream is applied onto the surface of the article while an electric field is applied for driving away the electrically charged particles from the surface, thereby removing particles having a dimension smaller than 1 micrometer from the surface. The presence of a collecting member allows the removal of resulting, floating particles.