Abstract:
Provided is an optical sensor mounting structure for use in image display device devices that can accurately measure the amount of light from a backlight by measuring leak LED light, without having to modify an image display panel module itself. In an image display device using an image display panel module in which a wire drawing port for drawing a wire from a backlight is formed in a panel sheet metal, an optical sensor mounting structure includes an optical sensor configured to measure leak light from the backlight and a positioning member (intermediate connector) positioning the optical sensor. The optical sensor is disposed near the wire drawing port and measures the leak LED light from the wire drawing port.
Abstract:
Provided is an optical sensor mounting structure which is used in an image display device and in which the gap between a reflection sheet and a tubular cushion for preventing the entry of external light into an optical sensor is eliminated so that the amount of light from a backlight can be measured accurately. A liquid crystal image display device includes an optical sensor that measures light from the back surface of a reflection sheet, a substrate having the optical sensor thereon, and a tubular cushion for preventing the entry of external light into the optical sensor. The front surface of the tubular cushion is bonded to the reflection sheet, and the back surface thereof is bonded to the substrate.
Abstract:
Provided is an optical sensor mounting structure which is used in an image display device and in which the gap between a reflection sheet and a tubular cushion for preventing the entry of external light into an optical sensor is eliminated so that the amount of light from a backlight can be measured accurately. A liquid crystal image display device includes an optical sensor that measures light from the back surface of a reflection sheet, a substrate having the optical sensor thereon, and a tubular cushion for preventing the entry of external light into the optical sensor. The front surface of the tubular cushion is bonded to the reflection sheet, and the back surface thereof is bonded to the substrate.
Abstract:
Provided is an optical sensor mounting structure which is used in an image display device and in which the gap between a reflection sheet and a tubular cushion for preventing the entry of external light into an optical sensor is eliminated so that the amount of light from a backlight can be measured accurately. A liquid crystal image display device includes an optical sensor that measures light from the back surface of a reflection sheet, a substrate having the optical sensor thereon, and a tubular cushion for preventing the entry of external light into the optical sensor. The front surface of the tubular cushion is bonded to the reflection sheet, and the back surface thereof is bonded to the substrate.
Abstract:
Provided is an optical sensor mounting structure which is used in an image display device and in which the gap between a reflection sheet and a tubular cushion for preventing the entry of external light into an optical sensor is eliminated so that the amount of light from a backlight can be measured accurately. A liquid crystal image display device includes an optical sensor that measures light from the back surface of a reflection sheet, a substrate having the optical sensor thereon, and a tubular cushion for preventing the entry of external light into the optical sensor. The front surface of the tubular cushion is bonded to the reflection sheet, and the back surface thereof is bonded to the substrate.
Abstract:
Provided is an optical sensor mounting structure which is used in an image display device and in which the gap between a reflection sheet and a tubular cushion for preventing the entry of external light into an optical sensor is eliminated so that the amount of light from a backlight can be measured accurately. A liquid crystal image display device 1 includes an optical sensor 12 that measures light from the back surface of a reflection sheet 104, a substrate 11 having the optical sensor 12 thereon, and a tubular cushion 13 for preventing the entry of external light into the optical sensor 12. The front surface of the tubular cushion 13 is bonded to the reflection sheet 104, and the back surface thereof is bonded to the substrate 11.