Abstract:
An inductive component and a method for producing an inductive component are disclosed. In an embodiment, the inductive component includes a first core part having wound first and second wires and a second core part arranged on the first core part. In various embodiments the inductive component has a low mode conversion, a low inductance in differential-mode operation, a high inductance for common-mode signals, a constant characteristic impedance, a low capacitive coupling of the wires, and/or a low leakage inductance.
Abstract:
An inductive component and a method for producing an inductive component are disclosed. In an embodiment, the inductive component includes a first core part having wound first and second wires and a second core part arranged on the first core part. In various embodiments the inductive component has a low mode conversion, a low inductance in differential-mode operation, a high inductance for common-mode signals, a constant characteristic impedance, a low capacitive coupling of the wires, and/or a low leakage inductance.
Abstract:
An antenna component is disclosed. In an embodiment the antenna component including a first, second and third electrical conductors and a magnetic core integrally embodied having different section, wherein the first, second and third electrical conductors are located at different sections of the magnetic core.
Abstract:
An SMD inductor as a component and a method for producing an SMD inductor. The inductor simultaneously has low losses and a high peak current-carrying capacity and also a high mechanical stability. To that end, it includes an inner core piece, an outer core piece and a coil having a wire. The inner core piece includes an alloy. The outer core piece includes ferrite. The wire is wound around the inner core piece, and the inner core piece with the wire is arranged in the outer core piece.
Abstract:
An antenna component is disclosed. In an embodiment the antenna component including a first, second and third electrical conductors and a magnetic core integrally embodied having different section, wherein the first, second and third electrical conductors are located at different sections of the magnetic core.