Abstract:
The invention relates to a piezoelectric transformer having a piezoelectric element (1) of the length L, wherein an input voltage Uin can be applied on an input side (2) for being transformed into an output voltage Uout on the output side (3) according to a transformation ratio Uout/Uin=Ku. The piezoelectric element (1) comprises multiple plies (4a, 4b, 4c) of inner electrodes, which are arranged in multiple different layers (S1, S2, S3). Each ply (4a, 4b, 4c) of inner electrodes extends along at least one predetermined sub-section of a predetermined length, wherein sub-sections of plies (4a, 4c) of a first group of layers (S1, S3) and sub-sections of plies (4b) of a second group of layers (S2) have different dimensions, so that the piezoelectric transformer satisfies the following condition: Cin≤N2Cout, wherein Cin indicates the input capacitance, Cout indicates the output capacitance, and N indicates the transformation ratio of the ideal transformer.
Abstract:
The present invention relates to a carrier (2) with a passive cooling function for a semiconductor component (3), having a main body (6) with a top side (7) and a bottom side (8) and at least one electrical component (13, 13a, 13b) that is embedded in the main body (6), wherein the carrier (2) has a first thermal via (14), which extends from the top side (7) of the main body (6) to the at least one electrical component (13, 13a, 13b), wherein the carrier (2) has a second thermal via (15), which extends from the at least one electrical component (13, 13a, 13b) to the bottom side (8) of the main body (6), and wherein the at least one embedded electrical component (13, 13a, 13b) is electrically contacted by the first and the second thermal via (14, 15).
Abstract:
The present invention relates to a component (1) for generating active haptic feedback, comprising a main body (2) having first and second internal electrodes (3, 4) stacked one above another in a stacking direction (S), wherein a respective piezoelectric layer (9) is arranged between the internal electrodes (3, 4), wherein the component (1) is configured to identify a force exerted on the component (1), wherein the component (1) is configured to generate active haptic feedback if a force exerted on the component (1) is identified, and wherein the haptic feedback is generated by virtue of an electrical voltage being applied between the first and second internal electrodes (3, 4), said electrical voltage resulting in a change in length of the main body (2).
Abstract:
A surge protection component with a main body which has at least one inner electrode arranged between two ceramic layers, wherein the at least one inner electrode is set back from at least one lateral face of the main body, wherein a gas-filled cavity is provided between the at least one inner electrode and the at least one lateral face, and wherein an outer electrode is respectively arranged on two mutually opposite lateral faces of the main body. According to a further aspect, the present invention relates to a method for producing a surge protection component.
Abstract:
A method for producing an electric component (19) is specified, wherein in a step A) a body (1) having at least one cavity (7, 8) is provided. In a step B), the cavity (7, 8) is at least partly filled with a liquid insulation material (13) by means of capillary forces. Furthermore, an electric component (19) is specified wherein a cavity (7, 8) is at least partly filled with an insulation material (13). The insulation material (13) is introduced into the cavity (7, 8) by means of capillary forces. Furthermore, an electric component (19) is specified wherein a cavity (7, 8) is at least partly filled with an organic insulation material (13) and wherein the cavity is at least partly covered by a fired external contacting (17, 18).