Abstract:
An imaging and lighting apparatus includes plural imaging modules and a lighting module related with at least one of the plural imaging module. The plural imaging modules have zooming functions. The lighting module also has a zooming function or has multiple functions. The plural zooming function and the multiple functions are controlled according to related control signals. Consequently, the joint movement of the corresponding imaging modules and the lighting module can achieve the purpose of optimizing the energy utilization as well as improving the overall performance.
Abstract:
An optical apparatus includes plural optical lens groups, an optical sensor, at least one lighting member and a casing. After a light beam passes through any of the plural optical lens groups, a travelling direction of the light beam is changed. After the light beam passes through at least one of the plural optical lens groups, the light beam is sensed and converted into an image signal by the optical sensor. The lighting member outputs a source beam. The plural optical lens groups, the optical sensor and the lighting member are accommodated within the casing. The optical apparatus has a single optical lens module, and is able to implement different optical functions simultaneously. Consequently, the overall volume of the optical apparatus is minimized, the fabricating cost of the optical apparatus is reduced, the assembling process is simplified, and the number of components to be assembled is reduced.
Abstract:
An image-capturing module successively captures light data in batches for a scene of a whole field of view by adjusting the position of a multifaceted prism, and executes patch process on these batches of the light data to acquire an image over the whole field of view in a higher imaging quality that is generally achieved by a camera module with large number of pixels. The movable multifaceted prism may be together with an image sensing module and a lens module to be within a holder to have a compact volume for an image-capturing mobile phone, wearable device, and/or smart opto-electronics.
Abstract:
An optical device includes a structured light generation unit, a light-emitting unit, a sensing unit and a substrate. After the light beams from the light-emitting unit pass through the structured light generation unit, a structured light pattern is generated. When the structured light is projected on an object, a structured light pattern is formed on the object. The sensing unit provides a sensing function. Moreover, the light-emitting unit and the sensing unit are integrally formed on the substrate. The optical device can output the structured light to provide diversified function. Since the light-emitting unit and the sensing unit are integrated, the occupied space is reduced.
Abstract:
An optical apparatus includes a photosensitive diode unit, a lens and a microstructure unit. The microstructure unit is arranged between the photosensitive diode unit and the lens. After plural light beams passing through the lens are received by the microstructure unit, travelling directions of the plural light beams are changed. Consequently, at least a portion of the plural light beams is guided to the photosensitive diode unit. In such way, the light collecting efficacy of the photosensitive diode unit is enhanced.
Abstract:
A detecting method and an optical apparatus using the detecting method are provided. The optical apparatus includes a structured light generation unit and a sense judging unit. When a structured light from the structured light generation unit is projected on a test surface, a test pattern and a test light spot are shown on the test surface. The sense judging unit judges whether the test surface is flat according to a deformation amount of the sensed test pattern, and acquires a distance between the test surface and the optical apparatus according to an area of the sensed test light spot. The detecting method judges whether a test surface is flat and detect a distance of the test surface. Since the structured light is used to detect the distance and the flatness of the test surface, the measuring complexity is reduced.
Abstract:
A combined optical lens module and an optical imaging device with the combined optical lens module are provided. The optical imaging device includes a visible light-emitting unit, an invisible light-emitting unit, at least one visible light lens group and at least one invisible light lens group. After a visible light beam is transmitted through the at least one visible light lens group, a propagating direction of the visible light beam is changed. After an invisible light beam is transmitted through the at least one invisible light lens group, a propagating direction of the invisible light beam is changed.
Abstract:
A surface mount device type laser module includes a housing, a vertical-cavity surface-emitting laser diode, a diffractive optical element and a base. The base is accommodated within the housing, and the vertical-cavity surface-emitting laser diode is integrated into the base. The base includes at least one surface transmission structure. The at least one surface transmission structure is exposed outside the base and the housing. An electronic signal is transmitted through the at least one surface transmission structure. Since the laser module is equipped with the diffractive optical element, the laser diffraction projection efficacy is achieved.
Abstract:
An optical apparatus includes plural optical lens groups with a specified field of view, an optical sensor and a casing. After a light beam passes through any of the plural optical lens groups, a travelling direction of the light beam is changed. Moreover, after the light beam passes through at least one of the plural optical lens groups, the light beam is sensed by the optical sensor and converted into an image signal by the optical sensor. The plural optical lens groups and the optical sensor are accommodated and fixed within the casing. With different fields of view, the images, which are with different field angles, will be taken simultaneously and effectively an optical zooming effect is performed. In short, the optical apparatus has a single optical lens module, and is able to implement different optical functions simultaneously. Consequently, the overall volume of the optical apparatus is minimized, and the fabricating cost of the optical apparatus is reduced. Moreover, the assembling process is simplified, and the number of components to be assembled is reduced.
Abstract:
A lighting apparatus includes a laser source module and a diffractive optical module. The laser source module emits a laser beam. When the laser beam is operated in a transverse mode or a multi-transverse mode, the laser beam has a first laser beam pattern. The diffractive optical module is arranged in front of the laser source module or at a location that receives the laser beam, so that the laser beam is irradiated on the diffractive optical module. The diffractive optical module includes a first structure pattern corresponding to the first laser beam pattern. After the laser beam is diffracted by the first structure pattern, a first structured light with a first structured light pattern is generated.