Abstract:
This invention includes a cleaning composition, the method of use of the cleaning composition, and a new use of a composition. The composition includes an oxidizing agent with a reduction potential of greater than about 0.1 E°(V) at 25° C., and is devoid of an oxidizing agent with a reduction potential of greater than about 1.5 E°(V) at 25° C. The oxidizing agent may be a salt of a nitrate or nitrite. The method includes applying the composition to a textile and working the composition. The composition may be effective in cleaning urine odors from textiles. The composition may remove odors from textiles without bleaching or discoloring the textile, even if the textile includes natural fibers such as wool.
Abstract:
Carpeting, upholstery, drapery and other textile fibers are cleaned by applying to the fibers an aqueous, chemically carbonated cleaning solution prepared by mixing a carbonate salt and a low soluble acid with hot water, such that the low soluble acid delayedly reacts with the carbonate salt to produce carbon dioxide before being applied to the textile fibers. The delayed production of carbon dioxide helps prevent the loss of carbon dioxide before the carbon dioxide is lost. The hot water increases cleaning capability of the cleaning solution.
Abstract:
A stain removing composition having a mixture of N-methyl ppyrrolidinone and at least one solvent from the group consisting of 1-methyl-2-butanol, dipropylene glycol monomethyl ether, propylene glycol n-propyl ether, and diethylene glycol monobutyl ether. Preferably, the stain removing composition comprises, in percent by weight about 70-90%, N-methyl ppyrrolidinone and about 10-30%, in percent by weight, at least one of the solvents from the group described above. In another embodiment, a method of removing a stain from a textile includes the steps of applying the stain removing composition to an area of application. After the composition has been applied to the area of application it is removed with a suction device or other type of absorption device. Water may be applied to the area of application after the composition has been applied to dilute the composition and help in the removal process.
Abstract:
A fluid mixing arrangement, referred to as a mixing block, for use in mixing two liquids like an acidic and a basic components of a cleaning solution, which is placed under pressure and sprayed through a conventional spray gun or nozzle at a reduced amount of pressure. In particular, the innovative design of the present invention provides the unique features of allowing manual and visual inspection of the various chambers, inlets, flow-rate or pressure reducing orifices, supply filters, and backflow preventing valves of the mixing block.
Abstract:
A composition for sealing exposed wood before finishing the wood, which composition includes polymer solids and an acid neutralizing agent. The acid neutralizing agent may be a weak base and/or a buffering agent. The polymer solids may include acrylate monomers, urethane monomers, and the like. Also disclosed is a method of sealing and neutralizing a wood surface before finishing the wood surface by applying the composition to the exposed wood surface.
Abstract:
A matte finish composition exhibiting superior qualities of maintaining a matting agent in dispersion without significantly increasing viscosity, which includes a polymer, a water-based solvent, a matting agent and a crosslinking agent. The polymer may include urethane monomers. The matting agent may be silicon dioxide. The matting agent may be a fine dust. The crosslinking agent may include a polyfunctional aziridine such as pentaerythrito-tris-(β-N-aziridinyl propionate).
Abstract:
A method and new use of an aqueous composition including a surfactant and a buffering agent, wherein the new use and method include the steps of applying the composition to a surface with an acidic finish, etching the surface, and removing the aqueous composition. The removal may be by evaporation. A new finish may be applied to the surface. Methods are disclosed for the cleaning and neutralizing of an existing finish to allow for the application of a new finish. Also disclosed are compositions for the cleaning and neutralizing of an existing finish without complete removal of the existing finish. The compositions include a buffering agent configured to neutralize the existing finish, and a surfactant.
Abstract:
Carpeting, upholstery, drapery and other textile fibers are cleaned by applying to the fibers an aqueous, chemically carbonated cleaning solution prepared by mixing a carbonate salt and a low soluble acid with hot water, such that the low soluble acid delayedly reacts with the carbonate salt to produce carbon dioxide before being applied to the textile fibers. The delayed production of carbon dioxide helps prevent the loss of carbon dioxide before the carbon dioxide is lost. The hot water increases cleaning capability of the cleaning solution.
Abstract:
The present invention is directed toward a floor-etching solution comprising a ketone such as 1-methyl-2-pyrrolidinone, a surfactant, and water. The solution further comprises a viscosity such that it may be applied to a surface by spraying, spritzing, or other similar application methods. The solution further comprises an evaporation rate low enough that it does not completely evaporate from the surface for at least 15 minutes.
Abstract:
A stain removing composition having a mixture of N-methyl pyrrolidinone and at least one solvent from the group consisting of 1-methyl-2-butanol, dipropylene glycol monomethyl ether, propylene glycol n-propyl ether, and diethylene glycol monobutyl ether. Preferably, the stain removing composition comprises, in percent by weight about 70-90%, N-methyl pyrrolidinone and about 10-30%, in percent by weight, at least one of the solvents from the group described above. In another embodiment, a method of removing a stain from a textile includes the steps of applying the stain removing composition to an area of application. After the composition has been applied to the area of application it is removed with a suction device or other type of absorption device. Water may be applied to the area of application after the composition has been applied to dilute the composition and help in the removal process.