Abstract:
A wavelength conversion member is provided. The wavelength conversion member includes: a wavelength conversion layer including at least one kind of quantum dots that are excited by excitation light to emit fluorescence and an antioxidant; at least one interposing layer that is formed to be adjacent to the wavelength conversion layer; and a barrier layer that is formed on at least one surface of the wavelength conversion layer, in which at least one layer of the interposing layers is an antioxidant-containing interposing layer including the antioxidant.
Abstract:
The backlight unit includes a light source unit, and a wavelength conversion member disposed on an optical path of light emitted from the light source unit. The light source unit includes a light source allocated to each of the areas, a control of the backlight brightness for each area is performed by controlling a light emission intensity of each light source allocated to each area independently of a light emission intensity of a light source allocated to a different area, and a light source allocated to at least one area includes a light source group including two or more kinds of light sources having different light emission maximum wavelengths, and a light emission intensity of at least one kind of light source included in the light source group is capable of being controlled independently of a light emission intensity of a different light source included in the light source group.
Abstract:
A wavelength conversion member, is provided with a wavelength conversion layer that includes quantum dots and is interposed between two barrier layers. The wavelength conversion member includes a light scattering layer that is provided between the barrier layers and the wavelength conversion layer, in which one of the barrier layers closest to the light scattering layer is formed of an inorganic component, the light scattering layer includes a binder, which is formed of either a compound having a hydrogen bonding functional group and a polymerizable group in a molecule or an organic metal coupling agent, and scattering particles having a diameter R of 0.2 to 5 μm, a thickness d of the light scattering layer is 0.2 to 4 μm, a thickness D of the wavelength conversion layer is 10 to 100 μm, and a ratio of d to D is 0.2% to 10%.
Abstract:
Provided is manufacturing method of a quantum dot-containing laminated body including: forming a coating film by applying a quantum dot-containing composition which contains quantum dots, a curable compound, and a thixotropic agent and has a viscosity in a case of a shear rate of 500 s−1 of 3 to 100 mPa·s and a viscosity in a case of a shear rate of 1 s−1 of equal to or greater than 300 mPa·s, onto a first base material; laminating a second base material onto the coating film; and applying external stimuli to the coating film sandwiched between the first base material and the second base material for hardening, and forming a quantum dot-containing layer. The manufacturing method realizes high productivity, obtains a quantum dot-containing layer without coating streaks, and has slight film thickness unevenness of the quantum dot-containing laminated body.
Abstract:
The backlight unit includes two or more light sources, and a wavelength conversion member positioned on each of optical paths of light emitted by the two or more light sources, wherein the wavelength conversion member includes a wavelength conversion layer containing at least a phosphor emitting green light when excited with exciting light and a phosphor emitting red light when excited with exciting light, and at least either maximum emission wavelengths or angles of incidence of entry into the wavelength conversion member of the light emitted by the two or more light sources differ.
Abstract:
A method for producing an optical film including: laminating a hard coat layer on one side of an optical substrate in roll form, the hard coat layer having a transparent support and an optical anisotropic layer. The transparent support is laminated on the optical anisotropic layer, the one side is a transparent support-side of the optical substrate, the hard coat layer is obtained by coating, drying and curing a composition for forming a hard coat layer containing a curable monomer, a photo-polymerization initiator, and a solvent. The solvent is a mixture of at least one solvent selected from (S-1) and (S-2) and at least one solvent selected from (S-3), or a mixture of at least one solvent selected from (S-1) and at least one solvent selected from (S-2): (S-1) solvents dissolving the transparent support; (S-2) solvents swelling the transparent support; and (S-3) solvents neither dissolving nor swelling the transparent support.
Abstract:
There are provided an image forming method, an image forming apparatus, and an image forming program capable of giving a temporal change to an observation image by intentionally providing a time difference between image appearance recognition timings for a plurality of regions of the observation image. There is provided an image forming method of forming an observation image by exposing a photographic photosensitive material using an input image and performing development processing. The observation image includes an image A of a first image region in which the image appearance recognition timing after a start of development processing is relatively earlier and an image B of a second image region in which the image appearance recognition timing after a start of development processing is relatively later. First, two original images are acquired, and a first original image and a second original image respectively corresponding to the first image region and the second image region are determined. For the first original image and the second original image, a first drawing condition that satisfies a condition of the image appearance recognition timing of the first image region and a second drawing condition that satisfies a condition of the image appearance recognition timing of the second image region are created. The input image which is to be used for forming the observation image is generated based on the first original image, the first drawing condition, the second original image, and the second drawing condition.
Abstract:
A wavelength conversion member including a wavelength conversion layer comprising a quantum dot, wherein the wavelength conversion layer includes an organic matrix, and the organic matrix contains a polymer and one or more of compounds selected from the group consisting of compounds represented by general formula (1) and the like; and a quantum dot-containing polymerizable composition containing a quantum dot, a radical polymerizable compound, and one or more of compounds selected from the group consisting of compounds represented by general formula (1) and the like are provided. The wavelength conversion member has an excellent light resistance and the composition has an excellent photocurability which enables a production of a wavelength conversion member containing a quantum dot which has a less tendency to lower its light emission intensity.
Abstract:
An optical film having: a hard coat layer; an optically anisotropic layer; and a transparent support, wherein the optically anisotropic layer contains a liquid crystalline compound and a binder, the hard coat layer, the transparent support, and the optically anisotropic layer are laminated in this order, a surface of the optically anisotropic layer contains a fluorine-containing compound not forming covalent bond with the binder of the optically anisotropic layer, a surface of the optical film on the hard coat layer-formed side contains a fluorine-containing or silicone series compound being fixed by covalent bond, and a topmost surface properties of the optical film on hard coat layer-formed side satisfies the specific conditions.
Abstract:
A method of manufacturing an anti-reflection film, the method forming a multi-layer structure with different refractive indices from a coating composition in which the following (A) to (F) components are mixed. (A) Fluorine-containing polymer including a fluorine-containing hydrocarbon structure and a constituent unit derived from a compound having at least one group selected from a polyalkylene oxide group and a basic functional group, (B) Low refractive index inorganic fine particles which are not surface-modified or low refractive index inorganic fine particles which are surface-treated with a silane coupling agent having the molecular weight of 600 or less, (C) A curable binder containing no fluorine atoms in the molecule, (D) A solvent, (E) A polyfunctional fluorine-containing curable compound, and (F) High refractive index inorganic fine particles treated with a specific surface modifying agent.