Abstract:
A piezoelectric element includes, in sequence, a substrate, a lower electrode layer, a growth control layer, a piezoelectric layer including, as a main component, a perovskite-type oxide containing lead and an upper electrode layer. The growth control layer includes a metal oxide represented by MdN1-dOe, where M is composed of one or more metal elements capable of substituting in the perovskite-type oxide, 0
Abstract:
An object of the present invention is to provide an electrode material for an organic semiconductor device with which an excellent electrode pattern can be formed, a method for forming an electrode pattern, and an organic thin-film transistor.An electrode material for an organic semiconductor device of the present invention includes inorganic nanoparticles, an organic π-conjugated ligand, water, 0.0005% to 15% by mass of a fluorine-based surfactant, and a surface tension adjuster of which a dielectric constant is 20 to 30, in which the organic π-conjugated ligand is a ligand having at least one hydrophilic substituent.
Abstract:
An object of the present invention is to provide an electrode material for an organic semiconductor device which maintains excellent conductivity and of which contact properties with an organic semiconductor becomes favorable. The electrode material for an organic semiconductor device of the present invention contains inorganic nanoparticles and an organic π-conjugated ligand, in which the organic π-conjugated ligand is a ligand having at least one electron-withdrawing substituent.
Abstract:
There are provided a piezoelectric film-attached substrate and piezoelectric element, which include, on a substrate in the following order, a lower electrode layer, a piezoelectric film containing a perovskite-type oxide containing lead as a main component of an A site, and a buffer layer, where the buffer layer contains a metal oxide represented by MdN1-dOe. Here, M consists of one or more metal elements substitutable for the A site of the perovskite-type oxide and has an electronegativity of less than 0.95. In a case of 0
Abstract:
A piezoelectric element includes, in sequence, a substrate, a lower electrode layer, a growth control layer, a piezoelectric layer including a perovskite-type oxide containing lead as a main component of an A site, and an upper electrode layer. The growth control layer includes a metal oxide represented by MdN1−dOe, where M is one or more metal elements capable of substituting for the A site of the perovskite-type oxide. When the electronegativity of M is X, 1.41X−1.05≤d≤A1·exp(−X/t1)+y0, where A1=1.68×1012, t1=0.0306, and y0=0.59958. The perovskite-type oxide is represented by (Pba1αa2)(Zrb1Tib2βb3)Oc, where 0.5
Abstract:
The optical thin film is provided on a substrate and includes, in order, from the substrate side, an interlayer, a silver-containing metal layer, and a dielectric layer, in which an anchor region including an oxide of an anchor metal is provided in an interface region of the silver-containing metal layer on a side close to the interlayer, a cap region including an oxide of the anchor metal is provided in an interface region of the silver-containing metal layer on a side close to the dielectric layer, a film thickness of the silver-containing metal layer is 6 nm or less, the silver-containing metal layer contains a high standard electrode potential metal, and a peak position of a concentration distribution of the high standard electrode potential metal in a film thickness direction of the silver-containing metal layer is positioned closer to the interlayer than a peak position of a silver concentration distribution.
Abstract:
An antireflection film is provided on a substrate and includes an interlayer, a silver-containing metal layer containing silver, and a dielectric layer, which are laminated in this order on a side of a substrate, in which the interlayer is a multilayer film having at least two layers in which a layer of high refractive index having a relatively high refractive index and a layer of lower refractive index having a relatively low refractive index are alternately laminated, the dielectric layer has a surface exposed to air, and the dielectric layer is a multilayer film including a silicon-containing oxide layer, a magnesium fluoride layer, and an adhesion layer provided between the silicon-containing oxide layer and the magnesium fluoride layer and configured to increase adhesiveness between the silicon-containing oxide layer and the magnesium fluoride layer.
Abstract:
A piezoelectric laminate and a piezoelectric element, including on a substrate in the following order, a lower electrode layer, and a piezoelectric film, in which a region of the lower electrode layer, the region being in contact with the piezoelectric film, is constituted of a metal layer, where a (111) plane of the metal layer has an inclination of 1° or more with respect to a surface of the substrate, and the piezoelectric film contains a perovskite-type oxide containing Pb.
Abstract:
This method for producing a transparent optical film includes a film formation step of forming a silver layer and a high standard electrode potential metal layer so as to be laminated on a substrate, the film formation step including a silver deposition step of forming the silver layer, at a thickness of 6 nm or less by vacuum deposition, and a high standard electrode potential metal deposition step of forming the high standard electrode potential metal layer formed of a high standard electrode potential metal having a higher standard electrode potential than that of silver by vacuum deposition, and an alloying step of forming a silver alloy layer by diffusing the high standard electrode potential metal within the silver layer by performing a heating treatment at a temperature of 50° C. or higher and 400° C. or lower.
Abstract:
A method for producing an amorphous oxide thin film includes: a pre-treatment process of selectively changing a binding state of an organic component, at a temperature lower than a pyrolysis temperature of the organic component, in a first oxide precursor film containing the organic component and In, to obtain a second oxide precursor film in which, when an infrared wave number range of from 1380 cm−1 to 1520 cm−1 in an infrared absorption spectrum obtained by performing a measurement by Fourier transform infrared spectroscopy is divided into an infrared wave number range of from 1380 cm−1 to 1450 cm−1 and an infrared wave number range of from more than 1450 cm−1 to 1520 cm−1, a peak positioned within the infrared wave number range of from 1380 cm−1 to 1450 cm−1 exhibits the maximum value in the infrared absorption spectrum within an infrared wave number range of from 1350 cm−1 to 1750 cm−1; and a post-treatment process of removing the organic component remaining in the second oxide precursor film, to transform the second oxide precursor film into an amorphous oxide thin film containing In.