Abstract:
An embodiment method for massively parallel processing includes initiating a management instance on an initial machine, the management instance generating an initial partition corresponding to the initial machine, determining a total number of partitions desired for processing a database, the total number of partitions including the initial partition, determining a number of additional machines available to process the database, grouping the initial machine and the additional machines together in a pod, and launching the management instance on the additional machines in the pod to generate the total number of partitions desired for the database. Additional embodiment methods and an embodiment system operable to perform such methods are also disclosed.
Abstract:
An embodiment method for massively parallel processing includes assigning a primary key to a first table in a database and a foreign key to a second table in the database, the foreign key of the second table identical to the primary key of the first table, determining a number of partition groups desired for the database, partitioning the first table into first partitions based on the primary key assigned and the number of partition groups desired, partitioning the second table into second partitions based on the foreign key assigned and the number of partition groups desired, and distributing the first partitions and the second partitions to the partition groups as partitioned. An embodiment system for implementing the embodiment methods is also disclosed.
Abstract:
An embodiment method for massively parallel processing includes assigning a primary key to a first table in a database and a foreign key to a second table in the database, the foreign key of the second table identical to the primary key of the first table, determining a number of partition groups desired for the database, partitioning the first table into first partitions based on the primary key assigned and the number of partition groups desired, partitioning the second table into second partitions based on the foreign key assigned and the number of partition groups desired, and distributing the first partitions and the second partitions to the partition groups as partitioned. An embodiment system for implementing the embodiment methods is also disclosed.
Abstract:
A massively parallel processing (MPP) database can be re-partitioned/re-balanced while remaining on-line through a staged migration procedure. Staged migration may include a first stage and a second stage. During the first stage, entries in an existing partition are reallocated to the new partition, and the catalog is updated to associate the re-allocated entries with both the existing partition and the new partition such that queries for the re-allocated entries are directed toward the existing partition and the new partition. During the second stage, the re-allocated entries are migrated from the existing partition to the new partition, and after the migration is complete, the catalog is re-updated to associate the migrated entries with the new partition such that new queries are directed toward the new partition.
Abstract:
A massively parallel processing (MPP) database can be re-partitioned/re-balanced while remaining on-line through a staged migration procedure. Staged migration may include a first stage and a second stage. During the first stage, entries in an existing partition are reallocated to the new partition, and the catalog is updated to associate the re-allocated entries with both the existing partition and the new partition such that queries for the re-allocated entries are directed toward the existing partition and the new partition. During the second stage, the re-allocated entries are migrated from the existing partition to the new partition, and after the migration is complete, the catalog is re-updated to associate the migrated entries with the new partition such that new queries are directed toward the new partition.