Abstract:
According to the embodiments provided herein, an island in a regular, closed shape is ablated in a first conductive layer. An interconnect is formed through the island, using the island as an alignment fiducial. The island and the interconnect are isolated from the remainder of the first conductive layer.
Abstract:
A photovoltaic device includes a substrate and has a transparent conductive oxide layer, a conductive back layer, and at least one intermediate semiconductor layer formed thereon. An isolation scribe divides and electrically isolates the oxide layer, the back layer and the semiconductor layer to define two photovoltaic cells. A conductor extends across the isolation scribe and connects the back layer of one photovoltaic cell to the oxide layer of the other photovoltaic cell.
Abstract:
According to the embodiments provided herein, a method for scribing a layer stack of a photovoltaic device can include directing a laser scribing waveform to a film side of a layer stack. The laser scribing waveform can include pulse groupings that repeat at a group repetition period of greater than or equal to 1.5 μs. Each pulse of the pulse groupings can have a pulse width of less than or equal to 900 fs.
Abstract:
According to the embodiments provided herein, a method for scribing a layer stack of a photovoltaic device can include directing a laser scribing waveform to a film side of a layer stack. The laser scribing waveform can include pulse groupings that repeat at a group repetition period of greater than or equal to 1.5 µs. Each pulse of the pulse groupings can have a pulse width of less than or equal to 900 fs.
Abstract:
According to the embodiments provided herein, a method for scribing a layer stack of a photovoltaic device can include directing a laser scribing waveform to a film side of a layer stack. The laser scribing waveform can include pulse groupings that repeat at a group repetition period of greater than or equal to 1.5 μs. Each pulse of the pulse groupings can have a pulse width of less than or equal to 900 fs.