Abstract:
The present invention relates to a biodegradable material for controlling ammonia, hydrogen sulfide, odor, and/or volatile organic compounds emissions from organic wastes. The biodegradable material in accordance with the present invention may be used to control, reduce, or prevent noxious emissions from organic wastes from, for example, animals and animal production, food and food production, pets, composting, organic fertilizer, biosolids, and potting soil mixtures to name a few. The present invention also relates to sachets, bioscrubbers, biofilters, and biomass filters comprising a biodegradable material for controlling such emissions. The present invention further relates to processes for producing and processes for using a biodegradable material to control noxious emissions from organic waste. In particular, the present invention is useful with respect to managing animal wastes, including, for example, pet, poultry, swine, dairy, horse, other livestock, other animal, and human wastes.
Abstract:
A method producing ethanol by combining an plant fiber material containing calcium carbonate with at least one lignocellulosic agricultural residue into a mixture. The plant fiber material can be a paper sludge. The mixture is then hydrolyzed and the resultant hydrolysate is then fermented into ethanol.
Abstract:
Methods for fractional catalytic pyrolysis which allow for conversion of biomass into a slate of desired products without the need for post-pyrolysis separation are described. The methods involve use of a fluid catalytic bed which is maintained at a suitable pyrolysis temperature. Biomass is added to the catalytic bed, preferably while entrained in a non-reactive gas such as nitrogen, causing the biomass to become pyrolyzed and forming the desired products in vapor and gas forms, allowing the desired products to be easily separated.
Abstract:
Methods for fractional catalytic pyrolysis which allow for conversion of biomass into a slate of desired products without the need for post-pyrolysis separation are described. The methods involve use of a fluid catalytic bed which is maintained at a suitable pyrolysis temperature. Biomass is added to the catalytic bed, preferably while entrained in a non-reactive gas such as nitrogen, causing the biomass to become pyrolyzed and forming the desired products in vapor and gas forms, allowing the desired products to be easily separated.
Abstract:
Methods for fractional catalytic pyrolysis which allow for conversion of biomass into a slate of desired products without the need for post-pyrolysis separation are described. The methods involve use of a fluid catalytic bed which is maintained at a suitable pyrolysis temperature. Biomass is added to the catalytic bed, preferably while entrained in a non-reactive gas such as nitrogen, causing the biomass to become pyrolyzed and forming the desired products in vapor and gas forms, allowing the desired products to be easily separated.
Abstract:
Methods for fractional catalytic pyrolysis which allow for conversion of biomass into a slate of desired products without the need for post-pyrolysis separation are described. The methods involve use of a fluid catalytic bed which is maintained at a suitable pyrolysis temperature. Biomass is added to the catalytic bed, preferably while entrained in a non-reactive gas such as nitrogen, causing the biomass to become pyrolyzed and forming the desired products in vapor and gas forms, allowing the desired products to be easily separated.
Abstract:
A method for production of lactic acid involving extracting protein from a natural renewable feedstock, preferably extracted from lignocellulose sources such as soybean hull, separating the feedstock into liquid and solid substrate feedstock, steam exploding the solid substrate feedstock by placing the solid feedstock in a pressure chamber, pressurizing the steam chamber with saturated steam, maintaining the pressure until the solid feedstock reaches temperatures in excess of the boiling point of water at atmospheric pressure, and explosively decompressing the pressure to a pressure no greater than atmospheric pressure. Hydrolyzing the steam-exploded feedstock by either acid hydrolysis or enzyme hydrolysis, and fermenting the resulting hydrolyzed feedstock to produce lactic acid. The hydrolyzing and fermenting steps may be carried out simultaneously, followed by recovering the lactate from the resultant material.
Abstract:
Methods for fractional catalytic pyrolysis which allow for conversion of biomass into a slate of desired products without the need for post-pyrolysis separation are described. The methods involve use of a fluid catalytic bed which is maintained at a suitable pyrolysis temperature. Biomass is added to the catalytic bed, preferably while entrained in a non-reactive gas such as nitrogen, causing the biomass to become pyrolyzed and forming the desired products in vapor and gas forms, allowing the desired products to be easily separated.
Abstract:
A process for producing a brightness stabilization mixture of water-soluble organic compounds from biomass pyrolysis oils comprising: a) size-reducing biomass material and pyrolyzing the size-reduced biomass material in a fluidized bed reactor; b) separating a char/ash component while maintaining char-pot temperatures to avoid condensation of pyrolysis vapors; c) condensing pyrolysis gases and vapors, and recovering pyrolysis oils by mixing the oils with acetone to obtain an oil-acetone mixture; d) evaporating acetone and recovering pyrolysis oils; e) extracting the pyrolysis oils with water to obtain a water extract; f) slurrying the water extract with carbon while stirring, and filtering the slurry to obtain a colorless filtrate; g) cooling the solution and stabilizing the solution against thermally-induced gelling and solidification by extraction with ethyl acetate to form an aqueous phase lower layer and an organic phase upper layer; h) discarding the upper organic layer and extracting the aqueous layer with ethyl acetate, and discarding the ethyl acetate fraction to obtain a brown-colored solution not susceptible to gelling or solidification upon heating; i) heating the solution to distill off water and other light components and concentrating a bottoms fraction comprising hydroxyacetaldehyde and other non-volatile components having high boiling points; and j) decolorizing the stabilized brown solution with activated carbon to obtain a colorless solution.
Abstract:
A process for the production of low molecular weight phenolic compounds from lignins through the pyrolysis of the lignins in the presence of a strong base. In a preferred embodiment, potassium hydroxide is present in an amount of from about 0.1% to about 5% by weight, the pyrolysis temperature is from about 400.degree. C. to about 600.degree. C. at atmospheric pressure, and the time period for substantial completion of the reaction is from about 1-3 minutes. Examples of low molecular weight phenolic compounds produced include methoxyphenols, non-methoxylated phenols, and mixtures thereof.