Abstract:
A housing accommodates an optical waveguide substrate, plural signal light receiving elements, and a signal-light-level monitoring light receiving element. Signal light and locally oscillated light are input into optical waveguides in the optical waveguide substrate from a first end face of the optical waveguide substrate. The plural signal light receiving elements are disposed aligned on a side of a second end face opposite to a side of the first end face of the optical waveguide substrate. The signal-light-level monitoring light receiving element is disposed on a side of a third end face or a fourth end face between the first end face and the second end face of the optical waveguide substrate and at a position closer to the first end face than to the second end face.
Abstract:
An optical device has a waveguide circuit, a transmitter that transmits transmitted light to the waveguide circuit, and a receiver that receives received light from the waveguide circuit. The waveguide circuit has an optical waveguide, a wavelength combiner and splitter, and a mode filter. The optical waveguide includes a first port where the transmitted light output from the transmitter is input to and a second port where the transmitted light is output from, guides the transmitted light, and guides the received light input from the second port. The wavelength combiner and splitter is arranged in the optical waveguide between the first port and the second port. The mode filter removes a higher-order mode of the received light input by use of the wavelength combiner and splitter and includes a third port that outputs the received light having the higher-order mode removed from the received light, to the receiver.
Abstract:
An optical device includes a photoelectric conversion element provided on a substrate, and a single mode fiber configured to guide light input to and output from the photoelectric conversion element toward a first direction perpendicular or obliquely upward with respect to the substrate or from the first direction. The single mode fiber has a curved portion that curves with a predetermined radius of curvature. The curved portion converts a propagating direction of the light between the first direction and a second direction that is different from the first direction, and radiates a higher order mode.