Abstract:
A probe assembly for inserting a probe into a flexible or semi-rigid vessel or tubing having a distal aseptic connector for coupling to the vessel or tubing, the probe sheath comprising at least a portion that is rigid, the probe sheath extending longitudinally from the aseptic connector and having at least one inner longitudinal lumen configured to receive an elongate sensor or probe body and to permit longitudinal movement of the sensor/probe body within the probe sheath lumen, and an actuator for deploying a probe within the vessel or tubing by advancing the probe body through the aseptic connector to a position where the probe can measure at least one parameter within the vessel or tubing is disclosed herein.
Abstract:
The invention discloses a bioreactor apparatus (1;101;201;301) for cultivation of cells comprising: a) a disposable bioreactor vessel (2) with one or more walls (3,4,5) defining an inner volume (6), at least one port (10) in a wall, wherein the disposable bioreactor vessel is positioned in a rigid support structure (8;108); and b) a heater (9;109;209;309), capable of heating an amount of culture medium to a target temperature in the range of 55-95° C., while the amount of culture medium is being confined in or conveyed to the inner volume.
Abstract:
A probe assembly for inserting a probe into a flexible or semi-rigid vessel or tubing having a distal aseptic connector for coupling to the vessel or tubing, the probe sheath comprising at least a portion that is rigid, the probe sheath extending longitudinally from the aseptic connector and having at least one inner longitudinal lumen configured to receive an elongate sensor or probe body and to permit longitudinal movement of the sensor/probe body within the probe sheath lumen, and an actuator for deploying a probe within the vessel or tubing by advancing the probe body through the aseptic connector to a position where the probe can measure at least one parameter within the vessel or tubing is disclosed herein.
Abstract:
Disclosed is a jacketed, tiered baffle, bioreactor tank comprising an outer cylindrical-shaped jacket and a cylindrical tank having an inner tank surface defining a chamber configured for supporting a flexible bag disposed within the chamber, and an outer tank surface having tiered baffles configured for routing a heat exchange fluid around the entirety of the outer tank surface, the cylindrical tank disposed axially within the outer cylindrical-shaped jacket. The outer cylindrical-shaped jacket is sealed to the cylindrical tank in a manner sufficient to prevent or minimize loss of the heat exchange fluid.
Abstract:
Disclosed herein are embodiments of a valve assembly for preventing dead leg spaces in a container or tubing, the embodiments including a three-way valve system for controlling back-pressure in a fluid generating device, such as a single-use high pressure bioreactor. Also disclosed is a pressurized reactor system for bioprocessing, comprising a single-use container including a flexible wall or a semi-rigid wall.
Abstract:
A bioreactor system and packaging is provided. The bioreactor system includes a vessel for housing biomaterials for processing and a support structure. The vessel includes a flexible material defining a chamber and a mixing system positioned within the chamber. The mixing system includes an agitator for imparting motion and mixing to the contents of the vessel and includes a base affixed to the flexible material at a base section of the chamber, a shaft moveably mounted in the base and extending from the base into the chamber and at least one mixing element mounted to the shaft, the shaft configured to be driven by a motor magnetically coupled to the shaft and external to the lower portion of the chamber. The support structure is connected to the mixing system such that the shaft is moveable therein and configured to cooperate with an external structure to provide support for the shaft.
Abstract:
A bioprocess mixer (1), which comprises: —a support vessel (2) with at least one side wall (3, 4, 5, 6) and a bottom wall (7), where the walls define a support vessel inner volume (8), and at least a first (9) and a second (10) magnetic impeller drive unit; and —a flexible bag (11, 111) adapted to fit inside the support vessel inner volume, where the bag has at least one bag side wall (12, 112, 13, 113, 14, 15), a bag bottom wall (16, 116) and a bag top wall (17, 117) defining a bag inner volume (18), and at least a first (19) and a second (20) magnetic impeller rotatably attached to a bag wall in the bag inner volume.
Abstract:
A fluid transfer assembly for single use bioreactors includes a fluid transfer housing that can be mounted to the impeller shaft using a bearing that places the fluid transfer assembly directly below the lowest impeller but allows the impeller shaft to spin inside independently of the fluid transfer assembly. A fluid conduit connects the fluid transfer housing to a port in the single use bag wall which allows fluids to be introduced into the sparger and which also helps prevent the fluid transfer assembly from rotating with the impeller shaft.
Abstract:
Disclosed is a heat exchange module for use in a chemical, pharmaceutical or biological reactor system, the module configured to be disposed in the reactor system having a flexible single use container, and including at least one thermally conductive surface adapted to contact the flexible single use container to facilitate heat transfer, and a fluid circulation path through which a heat exchange fluid can be circulated.