Abstract:
An improved coating for diode array targets is disclosed wherein a resistive sea is coated over the diode array. The resistive sea has a thickness of from 10 to 1000A and a resistivity of from 5 X 105 to 109 ohm-centimeters. The resistive sea comprises an electronically conductive borate glass containing an oxide of a metal, e.g. iron, vanadium, cobalt, etc. This layer has been found to serve a protective function and, in particular, serves to prevent an increase in the dark current of the array due to ''''aging'''' effects or due to vacuum baking of the array in preparation for use as an image intensifier.
Abstract:
A diode storage array, including a diode array on one face of a semiconductor wafer, an insulating layer overlying the opposite face of said wafer and a conductive layer overlying the insulating layer, is written upon by irradiating the conductive layer side of said wafer to induce charge storage in the insulating layer. The radiation may be high energy photons, a scanned electron beam or electrons from a photo-emitter. Readout is accomplished by irradiating the target with lower energy radiation to form electron-hole pairs in the wafer. The holes are selectively driven to the diode side of the wafer under the control of the stored charge where selected, reverse biased, diodes are discharged. Subsequent scanning of the diode array by an electron beam produces a variable output signal, indicative of the information stored. Since the charge on the insulating layer is not dissipated, the information can be read as often as desired.
Abstract:
An electron beam addressable memory is disclosed in which information is stored as an electric charge in a multilayered memory target. The multilayered memory comprises a conductive layer, an insulating layer having a plurality of charge storage sites, a layer of n-type and a layer of p-type semiconductor material having a p-n junction therebetween. The method of writing causes charge to be stored at selected sites in the insulating layer. The method of reading causes the current through the p-n junction, which is reverse biased, to vary in magnitude depending upon whether or not the beam impinges on a charged site. The read and write electron beams are preferably of the same energy and a different voltage is applied to the conductive layer during reading than is applied during writing. In another embodiment, the conducting layer is omitted and the effect of different voltages applied to the conducting layer is produced by secondary emission from the insulating layer.