Abstract:
Approaches for providing junction overlap control in a semiconductor device are provided. Specifically, at least one approach includes: providing a gate over a substrate; forming a set of junction extensions in a channel region adjacent the gate; forming a set of spacer layers along each of a set of sidewalls of the gate; removing the gate between the set of spacer layers to form an opening; removing, from within the opening, an exposed sacrificial spacer layer of the set of spacer layers, the exposed sacrificial spacer layer defining a junction extension overlap linear distance from the set of sidewalls of the gate; and forming a replacement gate electrode within the opening. This results in a highly scaled advanced transistor having precisely defined junction profiles and well-controlled gate overlap geometry achieved using extremely abrupt junctions whose surface position is defined using the set of spacer layers.
Abstract:
Embodiments of the present invention provide transistors with controlled junctions and methods of fabrication. A dummy spacer is used during the majority of front end of line (FEOL) processing. Towards the end of the FEOL processing, the dummy spacers are removed and replaced with a final spacer material. Embodiments of the present invention allow the use of a very low-k material, which is highly thermally-sensitive, by depositing it late in the flow. Additionally, the position of the gate with respect to the doped regions is highly controllable, while dopant diffusion is minimized through reduced thermal budgets. This allows the creation of extremely abrupt junctions whose surface position is defined using a sacrificial spacer. This spacer is then removed prior to final gate deposition, allowing a fixed gate overlap that is defined by the spacer thickness and any diffusion of the dopant species.
Abstract:
Approaches for providing junction overlap control in a semiconductor device are provided. Specifically, at least one approach includes: providing a gate over a substrate; forming a set of junction extensions in a channel region adjacent the gate; forming a set of spacer layers along each of a set of sidewalls of the gate; removing the gate between the set of spacer layers to form an opening; removing, from within the opening, an exposed sacrificial spacer layer of the set of spacer layers, the exposed sacrificial spacer layer defining a junction extension overlap linear distance from the set of sidewalls of the gate; and forming a replacement gate electrode within the opening. This results in a highly scaled advanced transistor having precisely defined junction profiles and well-controlled gate overlap geometry achieved using extremely abrupt junctions whose surface position is defined using the set of spacer layers.
Abstract:
Embodiments of the present invention provide transistors with controlled junctions and methods of fabrication. A dummy spacer is used during the majority of front end of line (FEOL) processing. Towards the end of the FEOL processing, the dummy spacers are removed and replaced with a final spacer material. Embodiments of the present invention allow the use of a very low-k material, which is highly thermally-sensitive, by depositing it late in the flow. Additionally, the position of the gate with respect to the doped regions is highly controllable, while dopant diffusion is minimized through reduced thermal budgets. This allows the creation of extremely abrupt junctions whose surface position is defined using a sacrificial spacer. This spacer is then removed prior to final gate deposition, allowing a fixed gate overlap that is defined by the spacer thickness and any diffusion of the dopant species.
Abstract:
Embodiments of the present invention provide transistors with controlled junctions and methods of fabrication. A dummy spacer is used during the majority of front end of line (FEOL) processing. Towards the end of the FEOL processing, the dummy spacers are removed and replaced with a final spacer material. Embodiments of the present invention allow the use of a very low-k material, which is highly thermally-sensitive, by depositing it late in the flow. Additionally, the position of the gate with respect to the doped regions is highly controllable, while dopant diffusion is minimized through reduced thermal budgets. This allows the creation of extremely abrupt junctions whose surface position is defined using a sacrificial spacer. This spacer is then removed prior to final gate deposition, allowing a fixed gate overlap that is defined by the spacer thickness and any diffusion of the dopant species.