Abstract:
Methods for producing a battery separator are provided. The methods include applying a liquid precursor material to a substrate to generate a coating layer on the substrate. The liquid precursor material includes a polymer, and a first solvent. The methods also include precipitating the polymer from the liquid precursor material in the coating layer to form a polymer membrane, and drying the polymer membrane to generate a battery separator.
Abstract:
Methods and components produced from carbon fiber pre-impregnated composite precursor materials (pre-preg) having enhanced flowability and moldability are provided. Discontinuous cut regions are introduced into a pre-preg. A sheet of pre-preg may be contacted with a patterned surface having a plurality of non-contiguous staggered cutters, so that the contacting creates discontinuous cuts in the pre-preg. A plurality of staggered discontinuous cut regions are formed in the plurality of continuous carbon fibers that define a first plurality of carbon fibers having a first length and a second plurality of carbon fibers having a second distinct length. The patterned surface may be provided on a cutter device that is a roller or a plate having the non-contiguous staggered cutters formed or disposed thereon. The discontinuous cut regions that are formed in the pre-preg reduce stiffness and improve moldability/flowability when forming carbon fiber polymeric composites, while retaining high strength levels.
Abstract:
A thick cathode is provided. The thick cathode includes a current collector and a coating disposed on the current collector and formed from an electrode composition. The electrode composition includes an active material, a conductive carbon filler, and a binder including carboxylic acid groups on a polymer backbone. The thick cathode has a surface and an energy density of at least 4 milliamp hours per square centimeter of the surface.
Abstract:
Methods for producing a battery separator are provided. The methods include applying a liquid precursor material to a substrate to generate a coating layer on the substrate. The liquid precursor material includes a polymer, and a first solvent. The methods also include precipitating the polymer from the liquid precursor material in the coating layer to form a polymer membrane, and drying the polymer membrane to generate a battery separator.
Abstract:
Methods and components produced from carbon fiber pre-impregnated composite precursor materials (pre-preg) having enhanced flowability and moldability are provided. Discontinuous cut regions are introduced into a pre-preg. A sheet of pre-preg may be contacted with a patterned surface having a plurality of non-contiguous staggered cutters, so that the contacting creates discontinuous cuts in the pre-preg. A plurality of staggered discontinuous cut regions are formed in the plurality of continuous carbon fibers that define a first plurality of carbon fibers having a first length and a second plurality of carbon fibers having a second distinct length. The patterned surface may be provided on a cutter device that is a roller or a plate having the non-contiguous staggered cutters formed or disposed thereon. The discontinuous cut regions that are formed in the pre-preg reduce stiffness and improve moldability/flowability when forming carbon fiber polymeric composites, while retaining high strength levels.
Abstract:
Methods for pre-lithiating negative electrodes for lithium-ion electrochemical cells (e.g., batteries) are provided. The methods include disposing a lithium metal source comprising a layer of lithium metal adjacent to a surface of a pre-fabricated negative electrode. The lithium metal source and electrode are heated (e.g., to a temperature of ≧about 100° C.) to transfer a quantity of lithium to the pre-fabricated negative electrode. This lithiation process adds excess active lithium capacity that enables replacement of irreversibly lost lithium during cell formation and cell aging, thus leading to increased battery capacity and improved battery life. The methods may be batch or continuous.
Abstract:
Methods for pre-lithiating negative electrodes for lithium-ion electrochemical cells (e.g., batteries) are provided. The methods include disposing a lithium metal source comprising a layer of lithium metal adjacent to a surface of a pre-fabricated negative electrode. The lithium metal source and electrode are heated (e.g., to a temperature of ≧about 100° C.) to transfer a quantity of lithium to the pre-fabricated negative electrode. This lithiation process adds excess active lithium capacity that enables replacement of irreversibly lost lithium during cell formation and cell aging, thus leading to increased battery capacity and improved battery life. The methods may be batch or continuous.