Abstract:
Middle distillate virgin oils, such as straight run furnace oil, jet fuel or kerosene are required to meet many commercial specifications, among which are maximum allowable total sulfur content, maximum allowable mercaptan sulfur content and maximum allowable total acid number. Middle distillates which do not meet commercial specifications in regard to total sulfur content can be hydrodesulfurized for the removal of the portion of the total sulfur required for meeting the commercial requirement. Such hydrodesulfurization requires more severe conditions than do processes for reduction of total acid number or for reduction of mercaptan sulfur content so that under the severe conditions required for hydrodesulfurization, excessive total acid number and excessive mercaptan content are automatically concomitantly reduced to commerically acceptable levels. The present invention relates to the hydrotreatment of virgin middle distillates which meet commercial specifications in regard to total sulfur content in the absence of prior hydrotreating or any other treatment, but do not meet commercial specifications in regard to total acid number or in regard to mercaptan sulfur content. According to the present invention, the latter middle distillates are not blended with high total sulfur feeds flowing to hydrodesulfurization processes requiring severe conditions to accomplish reduction in total sulfur content, but are hydrotreated separately under relatively more mild catalytic hydrotreating conditions to reduce mercaptan sulfur content or total acid number at hydrotreating severities which are so mild that there is an extremely limited consumption of hydrogen and a very limited removal of total sulfur. The catalyst employed in the mild hydrotreating processes of this invention is a deactivated hydrotreating catalyst from a more severe hydrodesulfurization or other hydrotreating operation which is no longer of viable use in the more severe operation due to numerous cycles of use and regeneration, due to excessive metals deposit thereon, or any other reason.
Abstract:
A multiple stage process is described for the catalytic hydrodesulfurization and hydrodemetallization of a residual petroleum oil boiling above the gasoline range. The product of the process comprises essentially material boiling above the gasoline range and comprises little material boiling below the initial boiling point of the residual oil feed. The hydrodesulfurization-demetallization process comprises an initial stage involving relatively high hydrogen pressure in the presence of a catalyst comprising a relatively low proportion of catalytically active hydrogenation metals. The process employs a final stage in series having a relatively lower hydrogen pressure and a catalyst comprising a relatively higher proportion of hydrogenation metals. The stream entering the final stage contains an amount up to 10, 20 or even 25 weight percent of the asphaltene content of the charge to the first stage while the effluent from the final stage is essentially free of asphaltenes. The final stage effluent is therefore suitable as a residual lubricating oil feedstock without requiring a solvent deasphalting step.
Abstract:
Middle distillate virgin oils, such as straight run furnace oil, jet fuel or kerosene are required to meet many commercial specifications, among which are maximum allowable total sulfur content, maximum allowable mercaptan sulfur content and maximum allowable total acid number. Middle distillates which do not meet commercial specifications in regard to total sulfur content can be hydrodesulfurized for the removal of the portion of the total sulfur required for meeting the commercial requirement. Such hydrodesulfurization requires more severe conditions than do processes for reduction of total acid number or for reduction of mercaptan sulfur content so that under the severe conditions required for hydrodesulfurization, excessive total acid number and excessive mercaptan content are automatically concomitantly reduced to commercially acceptable levels. The present invention relates to the hydrotreatment of virgin middle distillates which meet commercial specifications in regard to total sulfur content in the absence of prior hydrotreating or any other treatment, but do not meet commercial specifications in regard to total acid number or in regard to mercaptan sulfur content. According to the present invention, the latter middle distillates are not blended with high total sulfur feeds flowing to hydrodesulfurization processes requiring severe conditions to accomplish reduction in total sulfur content, but are hydrotreated separately under relatively more mild catalytic hydrotreating conditions to reduce mercaptan sulfur content or total acid number at hydrotreating severities which are so mild that there is an extremely limited consumption of hydrogen and a very limited removal of total sulfur. The catalyst employed in the mild hydrotreating processes of this invention is a deactivated hydrotreating catalyst from a more severe hydrodesulfurization or other hydrotreating operation which is no longer of viable use in the more severe operation due to numerous cycles of use and regeneration, due to excessive metals deposit thereon, or any other reason.
Abstract:
A lubricating oil composition having good shear stability is obtained by blending together a mineral lubricating oil and a viscosity index improving amount of a polymer of a normal alpha olefin having from four to 16 carbon atoms per molecule. The polymer is obtained by polymerizing the alpha olefin or alpha olefin mixture in the liquid phase in the presence of aluminum chloride and a nonpolymerizing hydrocarbon diluent at a temperature between about -40* and +70* F. for a time sufficient to produce a polymer having a viscosity of about 40 to about 3000 centistokes at 210* F. The alpha olefin is introduced into the polymerization system at a rate of about 0.6 to about 60 moles of olefin per mole of aluminum chloride per hour. The addition of the olefin is continued until 2 to 200 moles of olefin per mole of aluminum chloride has been added.