Abstract:
A mobile vehicle communications system adapted to perform a method of cellular reselection using vehicle telematics unit coupled to a vehicle antenna. The method includes: performing a measurement of a reference signal from a serving cell that is connected to the telematics unit; determining whether to perform a measurement of a target cell based on both a serving cell signal strength value (Srxlev) and a measured serving cell signal quality value (Qqualmeas); and when the measurement of the target cell is performed, then determining whether to reselect to the target cell based on cell selection values of the serving and target cells.
Abstract:
A system and method for providing an address for a Domain Name System (DNS) server to a consumer device, wherein the consumer device connects to the Internet through a vehicle, includes providing an address for a default DNS server to the consumer device; receiving a request from the consumer device to convert a domain name to an Internet Protocol (IP) address using the default DNS server; forwarding the request to the default DNS server; determining if the request has been resolved by the default DNS server within a time-to-respond limit; and updating the consumer device with a different address for a DNS server retrieved from a list stored in vehicle hardware if the request has not been resolved within the time-to-respond limit.
Abstract:
A communication system and a method for providing sponsored data service to a vehicle using a backend system that communicates with a vehicle telematics unit over a wireless carrier system. The method carried out by the system includes: establishing communication between the backend system and a wireless service provider (WSP); establishing communication between the backend system and an application service provider (ASP); coordinating, via the backend system, a sponsored data transaction for the vehicle between the WSP and the ASP; receiving an authorization from the ASP to provide sponsored data; and communicating the authorization to the WSP thereby authorizing the WSP to provide sponsored data service to the telematics unit.
Abstract:
A method and system for maintaining a wireless carrier system presence at a vehicle telematics unit in a vehicle includes placing the vehicle telematics unit in a quiescent mode that suspends its signal transmitting functions; instructing the vehicle telematics unit to periodically exit the quiescent mode and transmit a query that determines if the wireless carrier system used by a telematics service provider has changed; when the wireless carrier system has changed, receiving a new wireless profile associated with a new wireless carrier system; and storing the new wireless profile in a universal integrated circuit card (UICC) hardwired at the vehicle.
Abstract:
A method of controlling wireless voice and data communications includes identifying a radio access technology (RAT) in use at a vehicle telematics unit; establishing a wireless connection between the vehicle telematics unit and a central facility; wirelessly transmitting the identity of the RAT from the vehicle telematics unit to the central facility; receiving a message at the vehicle telematics unit from the central facility based on the identity of the RAT causing the vehicle telematics unit to: carry out simultaneous voice and data communications over a single wireless connection with the central facility when the identified RAT supports simultaneous voice and data communications; and establish a voice call with the central facility and receive data via short message service (SMS) messages when the identified RAT does not support simultaneous voice and data communications.
Abstract:
A method, implemented at a server of an operations control center of a telematics service provider, for transmitting commands to a network access device, is described. The method involves creating one or more command data packets, each comprising a payload and control information, the control information identifying an AT command air interface. The method further involves transmitting, by the server, the command data packets to the network access device via the AT command air interface, wherein the AT command air interface is a first tunnel extending through a network of the vehicular telematics unit. In addition, a method, implemented at a baseband processor of a network access device of a vehicular telematics unit, for receiving commands from a server of an operations control center and a system for transmitting commands between a server of an operations control center and a network access device are also described.
Abstract:
A method and a system for providing vehicle services to at least one communication device located at a vehicle via a vehicle telematics unit. The method carried out by the system includes the steps of: receiving a request at the vehicle telematics unit for first vehicle services from a first communication device located at a vehicle; associating a first identifier with the first communication device; and providing the first vehicle services to the first communication device, wherein the vehicle services are provided according to at least one services parameter associated with the first identifier.
Abstract:
A method of establishing a packet data connection includes accessing a Domain Name Server (DNS) to obtain an Internet Protocol (IP) address of a vehicle telematics unit; initiating a mobile-terminated packet data connection with the vehicle telematics unit using the IP address of the vehicle telematics unit; and establishing the mobile-terminated packet data connection when the vehicle telematics unit determines that a hostname representing an IP address of a third party initiating the mobile-terminated packet data connection matches at least one approved hostname recognized by the vehicle telematics unit.
Abstract:
A system and method of registering a voice over LTE (VoLTE) capable vehicle telematics unit with a wireless carrier system includes: detecting at the vehicle telematics unit a wireless signal broadcast by a cell tower; determining from the wireless signal whether the cell tower provides cellular service using a VoLTE cellular protocol; and when it is determined that the cell tower does not provide cellular service using the VoLTE protocol, then preventing the VoLTE-capable vehicle telematics unit from attempting to wirelessly connect with the cell tower using an IP multimedia subsystem (IMS) protocol.
Abstract:
A system and method of remotely changing use of a cellular protocol at a vehicle includes: storing, in a network access device (NAD) at the vehicle, identities of one or more cellular bands that provide cellular service according to an up-to-date cellular protocol; wirelessly receiving at the vehicle a computer-readable instruction that deactivates the up-to-date cellular protocol; and in response to the computer-readable instruction, the vehicle: obtains the identities of the cellular bands stored in the NAD; stores the obtained identities in a non-volatile memory device located apart from the NAD; and erases in the NAD the identities of the cellular bands that provide cellular service according to an up-to-date cellular protocol.