Abstract:
A vehicle kill switch assembly includes a switch that is coupled to a vehicle. The switch is positioned beneath a driver's seat of the vehicle and the switch is electrically coupled to the ignition system of the vehicle. The ignition system is turned off when the switch is disengaged. A biasing unit is coupled to the vehicle and the driver's seat is coupled to the biasing unit. The biasing unit biases the driver's seat upwardly in the vehicle and the biasing unit is compressed when the driver sits in the driver's seat. The switch is engaged when the biasing unit is compressed to facilitate the vehicle to be driven. Conversely, the switch is disengaged when the biasing unit biases the driver's seat upwardly to inhibit the vehicle from being driven.
Abstract:
Ethylene propylene copolymers, substantially free of diene, are described. The copolymers will have a uniform distribution of both tacticity and comonomer between copolymer chains. Further, the copolymers will exhibit a statistically insignificant intramolecular difference of tacticity. The copolymers are made in the presence of a metallocene catalyst.
Abstract:
This invention relates to a vinyl terminated higher olefin copolymer having an Mn of 300 g/mol or more (measured by 1H NMR) comprising: (i) from about 20 to about 99.9 mol % of at least one C5 to C40 higher olefin monomer; and (ii) from about 0.1 to about 80 mol % of propylene; wherein the higher olefin copolymer has at least 40% allyl chain ends. The copolymer may also have an isobutyl chain end to allyl chain end ratio of less than 0.7:1 and/or an allyl chain end to vinylidene chain end ratio of greater than 2:1.
Abstract:
A method for the preparation of olefin polymerization catalysts that are the reaction products of the catalytic reaction of surface hydroxyls of a support with a trialkyl silane to afford hydrogen and the corresponding surface bound alkyl silyl ether and at the same time with a strong Lewis acid which support is converted to a silica bound anion that in a second step is fully converted by reaction with QM2 to the desired catalyst. Catalyst compositions are disclosed herein. Processes disclosed herein include processes for the polymerization of olefinically unsaturated monomers comprising contacting a plurality of one or more of the monomers with the catalyst.
Abstract:
The present application relates to a new catalyst system for the polymerization of olefins, comprising a new ionic activator having the formula: [R1R2R3AH]+ [Y]−, wherein [Y]− is a non-coordinating anion (NCA), A is nitrogen or phosphorus, R1 and R2 are hydrocarbyl groups or heteroatom-containing hydrocarbyl groups and together form a first, 3- to 10-membered non-aromatic ring with A, wherein any number of adjacent ring members may optionally be members of at least one second, aromatic or aliphatic ring or aliphatic and/or aromatic ring system of two or more rings, wherein said at least one second ring or ring system is fused to said first ring, and wherein any atom of the first and/or at least one second ring or ring system is a carbon atom or a heteroatom and may be substituted independently by one or more substituents selected from the group consisting of a hydrogen atom, halogen atom, C1 to C10 alkyl, C5 to C15 aryl, C6 to C25 arylalkyl, and C6 to C25 alkylaryl, and R3 is a hydrogen atom or C1 to C10 alkyl, or R3 is a C1 to C10 alkylene group that connects to said first ring and/or to said at least one second ring or ring system. The present application also relates to a process for the polymerization of olefins, preferably propylene, using this and other catalyst systems, as well as to polymers made by said process.
Abstract:
A fluorophenylborate useful as an activator for an olefin polymerization catalyst is represented by the formula: Ct+[B—(ArfRn)4]− where Ct+ is a cation capable of extracting an alkyl group from, or breaking a carbon-metal bond of, an organo metallic compound; Arf is a fluorophenyl group; n is 1 or 2; and each R is independently selected from a fluorophenyl group and a fluoronaphthyl group, provided that when n=1, each R group is connected at the 3-position relative the connection between the associated Arf group and the boron atom and, when n=2; the R groups are connected at the 3-position and the 5-position respectively relative the connection between the associated Arf group and the boron atom.
Abstract:
This description addresses ionic compositions of matter comprising positively charged cations [Ct]+ and negatively charged anions [A]−, said anion comprising a central core Group 13 element to which are bound fluoroaryl ligands, at least one of said fluoroaryl ligands being substituted with a siloxy group represented by the symbols—SiOR3, wherein R is a C1-C30 hydrocarbyl or hydrocarbylsilyl substituent. [Ct]+ may be selected from any capable of use with olefin polymerization catalysts and typically will be from the group consisting of anilinium and ammonium cations, trityl carbenium cations, Group 11 metal cations, silylium cations, the cations of the hydrated salts of Group 1 or 2 metals, and derivatives of the foregoing anilinium, ammonium, trityl carbenium, and silylium cations containing C1-C20 hydrocarbyl, hydrocarbylsilyl, or hydrocarbylamine substituents for one or more hydrogen atoms of said cations. The ionic compositions described can be used to activate olefin polymerization catalysts, and can be prepared so as to be soluble in aliphatic solvents. Syntheses and polymerization are illustrated.
Abstract:
This invention relates to a vinyl terminated higher olefin copolymer having an Mn of 300 g/mol or more (measured by 1H NMR) comprising: (i) from about 20 to about 99.9 mol % of at least one C5 to C40 higher olefin monomer; and (ii) from about 0.1 to about 80 mol % of propylene; wherein the higher olefin copolymer has at least 40% allyl chain ends. The copolymer may also have an isobutyl chain end to allyl chain end ratio of less than 0.7:1 and/or an allyl chain end to vinylidene chain end ratio of greater than 2:1.
Abstract:
A method for the preparation of olefin polymerization catalysts that are the reaction products of the catalytic reaction of surface hydroxyls of a support with a trialkyl silane to afford hydrogen and the corresponding surface bound alkyl silyl ether and at the same time with a strong Lewis acid which support is converted to a silica bound anion that in a second step is fully converted by reaction with QM2 to the desired catalyst. Catalyst compositions are disclosed herein. Processes disclosed herein include processes for the polymerization of olefinically unsaturated monomers comprising contacting a plurality of one or more of the monomers with the catalyst.
Abstract:
A method of polymerizing olefins with catalyst systems, such as, for example, a multimodal catalyst system, wherein the catalyst system is stored at a controlled temperature to minimize loss of catalyst system productivity.