Abstract:
A method and a device for optically determining state variables inside a container (1) for liquefied gases. In the method and device, light emitted by an illumination unit (2) travels within an optical waveguide (7, 9) to a contact point (33) with the content of the container (1) and is partially reflected there, the intensity of the reflected light is measured by an image sensor (4), and a state variable is determined from the intensity. In order to create a comprehensive “image” of the state variables in the container and of the container content, several optical waveguides (29, 29′) are guided to contact points (33) which are distributed within the container (1) and form measurement points (9.1, 9.2, 9.3, . . . , 9.n). Locally assigned state variables (refractive index, density, temperature, etc.) of the container content are determined from the measured values obtained at the measurement points (9.1, 9.2, 9.3, . . . , 9.n) and are evaluated along with the spatial coordinates of the measurement points (9.1, 9.2, 9.3, . . . , 9.n) in the container (1).
Abstract:
A vehicle lighting system having a central light producing unit and bundles of optical fibers for the transport of light to lighting fixtures is provided. The central light-producing unit has a defined axis and at least one light source for producing light. The central light producing unit includes means for rotating the at least one light source about the axis. The light system further includes at least one light guide for receiving and guiding light produced by the at least one light source to at least one lighting fixture. The at least one light source is preferably rotated about a support collar which has at least one light guide, but preferably a plurality, connected to the collar. The light guides are preferably equally spaced about the periphery of the collar and which light guides receive and transport the light to light fixtures appropriately arranged in or on the vehicle.
Abstract:
A battery (1) having at least two serially connected cells (3′, 3″) located one above the other in a stack (2) and having flat electrodes (4, 5), the ends of the stack (2) forming the poles (9, 10) of the battery and the electrodes (4, 5) comprising connecting wires (11, 12) protruding sideways from the stack (2), at least one of the connecting wires (11, 12) of all cells (3′, 3″) being inductively coupled via a common core (13) extending approximately in the longitudinal axis of the stack, and the connecting wires (11, 12) of a first group of cells (3′) being coupled in an inductively opposite fashion to the connecting wires (11, 12) of a second group of cells (3″).
Abstract:
Apparatus for measuring the relative position of two parts with a deformable coil, which is connected to both parts and deforms according to their relative position, wherein the inductance of the coil depends on shape and is thus a measure of the relative position, and wherein the coil has a magnetic circuit which is closed in the manner of a toroidal coil.
Abstract:
A cooling/heating element for a rechargeable battery, the cooling/heating element including a cooling area having a first boundary which physically contacts a first cell of the rechargeable battery, and a second boundary which physically contacts a second cell of the rechargeable battery. The cooling/heating element can be stacked and also include an inlet and/or outlet which interacts with an inlet and/or outlet of an adjacent cooling/heating element in a stack.
Abstract:
The present invention relates to a method for the calibration of a position determination system of a rear axle steering actuator for a motor vehicle. The rear axle steering actuator has an actuator element which can be driven by a rotary movement of a rotor to a translation movement and whose geometrical center position is determined by a reference measurement. The position determination system includes a linear sensor and a rotary sensor. During calibration, a piece of calibration information is generated which includes a piece of zero point information of the linear sensor and a piece of sector information. The measurement range of the rotary sensor is divided into at least two sectors. The sector information identifies that angle at which the angular position of the rotor lies when the actuator element is arranged in its geometrical center position. The calibration information is stored in the linear sensor.
Abstract:
The invention relates to a device (1) for determining a fertile phase of a woman by ascertaining a CO2 partial pressure in a respiratory gas of the woman in several consecutive breaths, comprising an inlet for receiving the respiratory gas, and an outlet, a sample chamber (2), into which the respiratory gas can be conducted, a measuring module (3) with a measuring element (4) with which a CO2 concentration in the respiratory gas in the sample chamber (2) can be measured, optionally a pressure sensor (5) for measuring an air pressure, a processor (7) for processing measured data obtained by means of the measuring module (3) and the pressure sensor (5), and at least one output unit (9) for outputting a result of the measured data. So that the method can be carried out by a woman herself quickly and nevertheless with high precision, it is provided according to the invention that the device (1) is embodied as a hand-held device and an algorithm is stored in the processor (7), with which with a measurement based on several immediately consecutive breaths a predetermined reproducibility criterion regarding an end expiratory CO2 partial pressure of the respiratory gas can be tested, wherein, if the reproducibility criterion is met, the at least one output unit (9) outputs and/or signals and/or displays whether a fertile phase applies. Furthermore, the invention relates to a method for determining a fertile phase of a woman by ascertaining an end expiratory CO2 partial pressure in a respiratory gas and comparison of the measured data thus obtained with measured data in the follicle phase outside the fertile phase.
Abstract:
A method and a device for optically determining state variables inside a container (1) for liquefied gases. In the method and device, light emitted by an illumination unit (2) travels within an optical waveguide (7, 9) to a contact point (33) with the content of the container (1) and is partially reflected there, the intensity of the reflected light is measured by an image sensor (4), and a state variable is determined from the intensity. In order to create a comprehensive “image” of the state variables in the container and of the container content, several optical waveguides (29, 29′) are guided to contact points (33) which are distributed within the container (1) and form measurement points (9.1, 9.2, 9.3, . . . , 9.n). Locally assigned state variables (refractive index, density, temperature, etc.) of the container content are determined from the measured values obtained at the measurement points (9.1, 9.2, 9.3, . . . , 9.n) and are evaluated along with the spatial coordinates of the measurement points (9.1, 9.2, 9.3, . . . , 9.n) in the container (1).
Abstract:
A cooling/heating element for a rechargeable battery, the cooling/heating element including a cooling area having a first boundary which physically contacts a first cell of the rechargeable battery, and a second boundary which physically contacts a second cell of the rechargeable battery. The cooling/heating element can be stacked and also include an inlet and/or outlet which interacts with an inlet and/or outlet of an adjacent cooling/heating element in a stack.
Abstract:
The invention relates to a device (1) for determining a fertile phase of a woman by ascertaining a CO2 partial pressure in a respiratory gas of the woman in several consecutive breaths, comprising an inlet for receiving the respiratory gas, and an outlet, a sample chamber (2), into which the respiratory gas can be conducted, a measuring module (3) with a measuring element (4) with which a CO2 concentration in the respiratory gas in the sample chamber (2) can be measured, optionally a pressure sensor (5) for measuring an air pressure, a processor (7) for processing measured data obtained by means of the measuring module (3) and the pressure sensor (5), and at least one output unit (9) for outputting a result of the measured data. So that the method can be carried out by a woman herself quickly and nevertheless with high precision, it is provided according to the invention that the device (1) is embodied as a hand-held device and an algorithm is stored in the processor (7), with which with a measurement based on several immediately consecutive breaths a predetermined reproducibility criterion regarding an end expiratory CO2 partial pressure of the respiratory gas can be tested, wherein, if the reproducibility criterion is met, the at least one output unit (9) outputs and/or signals and/or displays whether a fertile phase applies. Furthermore, the invention relates to a method for determining a fertile phase of a woman by ascertaining an end expiratory CO2 partial pressure in a respiratory gas and comparison of the measured data thus obtained with measured data in the follicle phase outside the fertile phase.